

Accepted Manuscript

An Enhanced Artificial Neural Network with A Shuffled Complex
Evolutionary Global Optimization with Principal Component Analysis

Tiantian Yang , Ata Akabri Asanjan , Mohammad Faridzad ,
Negin Hayatbini , Xiaogang Gao , Soroosh Sorooshian

PII: S0020-0255(16)31351-2
DOI: 10.1016/j.ins.2017.08.003
Reference: INS 13007

To appear in: Information Sciences

Received date: 18 October 2016
Revised date: 25 July 2017
Accepted date: 1 August 2017

Please cite this article as: Tiantian Yang , Ata Akabri Asanjan , Mohammad Faridzad ,
Negin Hayatbini , Xiaogang Gao , Soroosh Sorooshian , An Enhanced Artificial Neural Network
with A Shuffled Complex Evolutionary Global Optimization with Principal Component Analysis,
Information Sciences (2017), doi: 10.1016/j.ins.2017.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2017 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020025516313512
Manuscript_a8575b0d58eaf218d7f477ed7b872c8c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0020025516313512

Highlights

 Heuristic global optimization schemes are able to remedy some drawbacks of back-propagation

used in ANN.

 An enhanced ANN training scheme is proposed using an efficient global optimization scheme.

 The proposed SP-UCI-enahnced ANN shows better performances than the GA-, PSO-, SA-, and

DE-based ANN.

 The heuristic search optimization schemes are universally adaptable for other types of ANNs.

An Enhanced Artificial Neural Network with A Shuffled Complex Evolutionary Global

Optimization with Principal Component Analysis

Tiantian Yang
1,2

, Ata Akabri Asanjan
1
, Mohammad Faridzad

1
, Negin Hayatbini

1
, Xiaogang Gao

1
,

and Soroosh Sorooshian
1

1
 Center for Hydrometeorology and Remote Sensing (CHRS) & Department of Civil and

Environmental Engineering, University of California, Irvine, California, USA

2
 Deltares USA Inc. Silver Spring, Maryland, USA

*Corresponding author: Dr. Tiantian Yang

Email: tiantiay@uci.edu

Tel: +1(949)824-1952

Address: 5300 Engineering Hall (Bldg 308), Irvine, CA 92617, USA

Abstract

The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural

Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of

being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization

schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic

Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the

field of ANN weight training. This study applied a new efficient and effective Shuffled Complex

Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of

California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale

numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17

benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other

EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI

algorithm possesses good potential in support of the weight training of ANN in real-word problems. In

addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison

experiments conducted in this paper are fundamental references for selecting proper ANN weight training

algorithms in practice.

Keywords: SP-UCI, Evolutionary Algorithm; Artificial Neural Networks; Weight Training; Global

Optimization

1. Introduction

The Artificial Neural Network (ANN) is a powerful, nonlinear, and adaptive mathematical predictive

model that was inspired by the neurological structure of the human brain. According to the literature, the

ANNs have been used extensively and successfully in various fields, including pattern recognition [16],

image processing [1], ecological modeling [23], and water resources management [47], etc. During the

development of ANNs, one of the significant advances is the implementation error BP concept [35]. In

Rumelhart, et al. [35], several neural networks were tested with the BP scheme, in which the output-layer

errors were purposely propagated into hidden-layers, and the optimal weights in the complete ANN were

derived with gradient descent optimization. Furthermore, Rumelhart, et al. [35] demonstrated that the BP

scheme worked far faster than earlier approaches for training ANNs, and made it possible to use neural

networks to solve problems that had been unsolvable in many fields. However, one of the drawbacks

associated with BP and gradient-based optimizations is that the search tends to become stuck in local

optimums, and optimization strategy lacks the capability to escape from local attractions. To optimization

the ANN cost function is a complex, non-differentiable, and multi-modal problem. Therefore, the use of

gradient-based optimizations is skeptical [40, 44]. Furthermore, BP and gradient-based optimization

schemes are extremely sensitive to initial conditions [18] and the prediction accuracy will dramatically

decrease as the number of hidden neurons increases when using BP and gradient-based optimization

schemes [14].

Given these aforementioned weaknesses of BP and gradient-based optimization schemes used in classical

ANN training, during the last decade, many researchers and model developers have been attempting to use

different types of EAs, such as GA, PSO, SA, and DE, as the alternatives for the BP in the ANN weight

training process. According to the literature, Ding, et al. [5] reviewed the many uses of EAs in optimizing

ANNs weights, and pointed out that the BP algorithm appeared to be more effective when used in local

searches, while the GA was good for global searches. Ilonen, et al. [15] compared a DE algorithm against

the classical gradient-based methods in the training process of a Feed-Forward Neural Network and

concluded that the optimal weights found by DE were always equal to or better than the initial optimal

weights found by the gradient-based methods when the computational time was relaxed. Gudise and

Venayagamoorthy [12] compared the computational efficiency of ANNs using PSO and BP in learning a

non-linear function, and they proved that PSO was a faster-learning algorithm than the BP scheme. Jain and

Srinivasulu [17] employed a GA in ANN rainfall-runoff models and proved that the ANN trained with the

GA was able to obtain more accurate, low-magnitude flow simulation than the ANN trained with the BP

scheme in the Kentucky River watershed. Slowik and Bialko [37] used multiple methods to train an ANN,

including the DE algorithm, BP, and a Levenberg-Marquardt method. They found that the DE-based ANN

could obtain better classification in the presumed time than the other two methods. Dai, et al. [4]

investigated a number of EAs in training the ANN, and concluded that all of the heuristic search algorithms

were superior over BP with regard to the regulation performances, but less computationally efficient.

Sulistiyo and Dayawati [39] developed a GA-type evolutionary strategy in optimizing the weights of a

Feed-Forward ANN and determined that the EA-based ANN had similar performances in the training phase

when compared to the BP-based ANN, but yielded consistently smaller errors in the testing phase.

According to the literatures mentioned above, it has been widely acknowledged that the BP and

gradient-descent optimization schemes have many drawbacks, and that the EAs are proven to be useful in

remedying the associated weaknesses with BP and gradient-based optimizations. However, given a

real-world regression or classification problem, selecting a proper ANN training algorithm is a tedious task,

which requires a large number of independent experiments and inclusive comparisons among all kinds of

EAs. Most of the comparison experiments summarized above were limited to a few particular cases and

comparison studies were carried out comparing a proposed EA against the BP scheme. In order to get a

more comprehensive comparison among all types of EAs in assisting ANN weight training, in this study,

one of the focuses is to carry out a large-scale numerical experiment and test the performances of different

EAs with regards to their enhancements on optimizing ANN training weights. The experiments in this

paper include 17 benchmark, real-world, machine-learning datasets retrieved from the UCI computer

science repository [24].

In addition, another significance of this study is to introduce a powerful evolutionary optimization scheme,

termed the SP-UCI [2] in support of the ANN weight training. The SP-UCI algorithm is a population-based,

global, evolutionary search scheme, which was developed based on an efficient and effective Shuffled

Complex Evolutionary Global Optimization – University of Arizona (SCE-UA) scheme [6]. The family of

the SCE-UA algorithm includes various versions, which were developed for different tasks, such as the

multi-objective optimization [46], distribution estimations in a Bayesian framework, and high-dimensional

optimization problems [2, 3]. All kinds of SCE-UA descendants are proven to be effective and efficient in

the fields of optimization, computer sciences, hydrology, and water resources management [2, 3, 6, 46].

According to Chu et al. [2, 3], SP-UCI combines the strengths of (1) the Nelder-Mead simplex downhill

local search scheme [30], (2) the global complex competition evolution [6], and (3) the Principal

Component Analysis (PCA) [19]. The advantage of the SP-UCI lies in its capability to address the

high-dimensional challenge, or termed as the “curse of dimensionality”, which is commonly associated

with complex, real-world problems. With respect to the ANN weight training problem, the total number of

ANN connectivity weights between input-hidden layers, and hidden-output layers is quite large, which

makes the optimization of ANN weight a suitable problem for applying the SP-UCI algorithm.

The superiority of the SP-UCI over GA, PSO, and DE on composite test functions has already been

demonstrated in Yang, et al. [46], however, no study has been conducted to implement the SP-UCI in ANN

training and investigate its suitability in tuning the ANN weights. In another previous study conducted by

Gupta, et al. [13], the Nelder-Mead simplex downhill scheme, which was used in SP-UCI, has been tested

against BP and the conjugated gradient-descent scheme with regard to training the ANN weights on a

number of simple test functions. According to the experiments demonstrated in Gupta, et al. [13], the

simplex downhill scheme is capable of producing residuals similar to those of BP and the conjugated

gradient-descent scheme, but requires fewer function evaluations. In addition, Gupta, et al. [13] concluded

that when using a global search procedure, i.e., the multi-start simplex approach, the associated risk of

population converging to a sub-optimal solution could be reduced. Nevertheless, the SP-UCI algorithm

remained untested, although the suitability of the simplex downhill scheme in training the ANN and the

sensitivity of the initial start position in the weight space were discussed in Gupta et al. [13]. Given the fact

that the Nelder-Mead simplex downhill scheme is only one of the three core-technics that constitute the

SP-UCI algorithm, a direct implementation of the SP-UCI algorithm into ANN weight training and

comparison against other EAs needs to be carried out.

Despite using EAs in training an ANN with a specific architecture or topography, the use of EAs in the

optimal design of an ANN structure is another popular research topic in the literature. According to Yao

[45], to design an ANN architecture is a trial-and-error process and is always subject to users’ preference

and expert experiences. EAs are also found to be useful tools in automatically designing ANN structures

and topographies as summarized by Yao [45], such as the number of hidden neurons, layer connectivity,

and the transfer function of each neuron, etc. Nevertheless, Fogel [9] argued that the evolution of

architectures without any weight training would not give accurate fitness, which indicated the importance

of proper tuning of ANN weights. A remedy will be to use EAs on ANN architecture and weight training

simultaneously and collaboratively so that a higher accuracy can be reached. As concluded by Yao [45],

simultaneous applying EAs on different levels of ANN, i.e., architecture, weight-space training and

learning rules, can be inefficient and unnecessary due to the large number of function evaluations required

by various EAs.

Therefore, in this study, we present a pioneer work of applying the SP-UCI algorithm in training the ANN

weight and comparing its performances with multiple state-of-the-art heuristic search methods, including

GA, PSO, SA, and DE. The main contributions of this study are (1) introduce a new type of EA, termed the

SP-UCI algorithm, into the weight training process of an ANN model, and (2) compare and investigate the

suitability of different kinds of heuristic search optimizations on large-scale, multi-disciplinary, benchmark

machine-learning datasets. The numerical comparison results will provide useful information and

references for any future study for choosing proper EAs as ANN training algorithms.

The organization of this paper is as follows: Section 2 introduces the methodologies, including ANN and

employed heuristic search methods (SP-UCI, GA, PSO, SA and DE), and the benchmark machine-learning

datasets. Section 3 presents the experiment results; Discussion is provided in Section 4, and Section 5

summarizes the main finding, conclusions and future works.

2. Methodology and Data

2.1 ANN and BP

The ANN is a powerful predictive model initially introduced by McCulloch and Pitts [29], which mimics

the neurological structure of the human brain [25]. In the structure of the ANN, a non-linear regression

mode of target variables is built on decision variables (also called predictors or features). The hearts of an

ANN structure are: (1) its hidden layer that consists of numbers of hidden nodes, and (2) the activation

functions processing and extracting explicit information between features and target variables. The ANN is

used extensively in many fields of study, such as pattern recognition [16], image processing [1], ecological

modeling [23], and water resources management [6, 28, 47, 48], etc. In the literature, one of the most

commonly used ANN structures is a Three-Layer Feed-Forward Neural Network (TLFFNN) [41, 47] (Fig.

1). As mentioned in Pratt [33], when the number of hidden nodes increases, the weight-space response

surface will become much rougher, which jeopardizes the global convergence of many classical

gradient-based optimization schemes. Therefore, the number of hidden nodes in the TLFFNN is set to 10,

which results in a high-dimensional weight space for our selected benchmark datasets.

<Figure 1 Here, Please!>

Fig. 1. A Three-Layer Feed-Forward Neural Network (TLFFNN)

As shown in Figure 1, a typical TLFFNN has three major parts: an input layer ⃗(
), a hidden

layer ⃗⃗(
), and an output layer ⃗(

), where , , and represent the total

number of inputs, hidden neurons, and outputs, respectively. A transformation function () is used to

connect the input with hidden neurons, and it is commonly calculated as the weighted sum of inputs, as

shown in Eq. (1).

 ∑

 (1)

where is the j-th neuron in the hidden layer, is the i-th input, represents the weight assigned to the

i-th input in order to calculate the j-th hidden neuron, and and .

Following a similar approach, another transformation function () is used to connect hidden neurons to the

outputs, which is shown in Eq. (2).

 ∑

 (2)

where is the k-th value in the output layer, is the j-th neuron in the hidden layer, represents the

weight assigned to the j-th neuron in the hidden layer, and and . In any ANN,

the transformation functions and that connect each layer are called connectivity functions or activation

functions. In this study, a hyperbolic tangent transformation function (Eq. 3) and a linear transformation

function (Eq. 4) are used to connect input layer to hidden layer, and connect hidden layer to output layer,

respectively.

 ∑

 , j= 1, 2,… (3)

 ∑

 , k= 1, 2,… (4)

The weights and are obtained by minimizing the Sum of Square Errors (SSE) between model

output and the target variable (Eq. 5). To minimize Eq. (5) becomes an optimization problem, whereas, in

this study, multiple EAs are employed and tested, including the proposed SP-UCI, GA, PSO, SA, and DE.

∑

 (5)

2.2 Heuristic Search Optimization

2.2.1 SP-UCI

The Shuffled Complex Evolution with Principal Component Analysis - University of California, Irvine

(SP-UCI) is first introduced by Chu et al. [2]. The SP-UCI is based on an effective and efficient Shuffled

Complex Evolution scheme - University of Arizona (SCE-UA) [6]. Since the debuts of SP-UCI and

SCE-UA, both of them they have been demonstrated as superior or competitive optimizers in comparison

with other heuristic search schemes, such as GA, PSO, SA, and DE optimizations based on the their

performance on both composite test functions [46] and many real-world applications [46, 49].

The difference between SP-UCI algorithm and its predecessor, SCE-UA algorithm, is the introduction of

Principal Component Analysis (PCA) with the purpose of monitoring and maintaining the population

diversity during the entire evolution process [2]. Due to the roughness of the response surface and the

complexity of high-dimensional optimization problems, when offspring particles converge to a subspace

within the original parameter space, the search will be restricted in the subspace instead of a full span of the

parameters of a problem. This phenomenon is commonly referred to “population degeneration”, which

prevents the global convergence of many direct-search algorithms [2]. By recursively using the PCA

technique during the evolutions of SCE-UA, the simplexes are allowed to search the full parameter space

instead of collapsed into a subspace; therefore, the risks of population premature convergence and

becoming trapped in local optimal are avoided.

To provide more detail, the procedure in SP-UCI includes the following steps: (1) The algorithm randomly

samples m p points in the search space as the initial population, where m is the number of complexes, and

p is the number of individuals in a complex. (2) The entire population is randomly shuffled and split into m

complexes. (3) The individuals in each complex are sorted based on their fitness, i.e., the objective function

values. (4) A simplex, i.e., a concave object with n + 1 vertices, is constructed in each complex using a

triangular possibility function, where n is the dimensionality of the problem. (5) A Nelder-Mead simplex

downhill optimization scheme [30] is carried out for each constructed simplex independently. (6) When

reaching a user-defined number of iterations, all individuals in each complex are transformed into an

orthogonal coordinate system, and the diversity and dimensionality are checked for each Principal

Component (PC). (7) If any “population degeneration” phenomenon is identified in a given complex, i.e., a

relative small standard deviation of population along each PC, a multi-normal resampling is executed with

regard to the PCs that produce relatively small standard deviation. (8) After the resampling, the entire

individuals in the orthogonal coordinate system are updated and transformed back into the ordinary

coordinate system to perform the Nelder-Mead simplex-downhill evolution for the next loop. (9) The

procedure (2)-(8) is repeated and looped until stopping criteria are met, i.e., the maximum number of

iterations is reached or population convergence is fulfilled. For interested readers, the algorithm flowcharts,

detailed information and mathematical descriptions are available in Chu et al. [2], and Yang, et al. [46].

2.2.2 Other Heuristic Search methods

The Genetic Algorithm (GA) belongs to one of the most popular evolutionary algorithms that mimic the

processes of natural selection [10]. Natural selection is defined as the processes that organisms

correspondingly survive and then produce offspring who consistently process the tendency to adapt their

environment. There are different types of natural selection processes, including chromosome heredity,

mutation, crossover and selection.

According to Simpson, et al. [36], the optimization of a particular problem using GA is achieved through

the following procedures: (1) Randomly select sample a number of individuals to form the initial

population. (2) All individuals are evaluated using the objective function and scored as fitness values. (3)

Select a number of members as parents and those individuals with lower fitness values are selected as elite

members. (4) The parent members produce their offspring using mutation and crossover, while these elite

members are passed to the next population without any changes. (5) Replace the current population with the

offspring and elite members. (6) Repeat Steps 2-5 until the stopping criteria are met, such as the average

relative changes in the fitness of functions during last iterations, or the user defined maximum number of

function evaluation. The GA code used in this study is a real-value coded version from the Matlab global

optimization package, which is one of the well-developed and stable GA toolboxes. The GA algorithm has

been used in optimizing the ANN connectivity weights and proven to be useful and efficient [42].

Similar to GA, the Particle Swarm Optimization (PSO) is another extensively used, population-based

global optimizer, which simulates the social-individual behaviors of bird flocking and fish schooling [20,

21]. Instead of natural selection operators, i.e., mutation or crossover, in PSO, the offspring production is

based on the fitness of individuals (particles) and their movement velocities towards the individual that has

the best fitness value. This is a simplified mimic of social behavior of bird foraging, in which the search

mechanism has been proven to be efficient and effective in Eberhart and Kennedy [7]. According to

Eberhart and Kennedy [7], it is assumed in the PSO search mechanism that all birds (individuals) are

unaware of food sources (global optimum); therefore, one of the effective foraging strategies for bird flock

is to fly toward the bird which is nearest to the food. It worth mentioning that the search mechanism in PSO

is different from that in GA. The population in PSO is updated by approaching two best positions: (1) the

best location that gives the best fitness value within the neighborhoods of current positions of all

individuals, and (2) the historical best location that gives the best fitness value throughout the entire

evolution that each individual has achieved so far, while in GA the individuals move as a group

approaching the global optimum [31]. The employed PSO code is obtained from the standard Matlab global

optimization toolbox.

The Simulated Annealing (SA) algorithm was originally introduced by Kirkpatrick [22] as a robust global

optimizer for addressing the issue of trapping in local minimums of the classical gradient-descent method.

The concept of SA was inspired by the process of annealing in metal-work, in which a metal material was

repeatedly heated and cooled down to improve the stiffness of metals. In the metal-work process, metal is

heated to a pre-defined temperature, which will allow the metal molecules to vibrate in their neighborhood,

and partially break the molecular bonds. Followed by the heating process, a cooling process reforms the

molecular structure and recombines stronger molecular bonds in a way that the whole physical system

reaches an entropy maximum state.

This metal-work annealing concept can be used creatively for In Simulated Annealing optimization, a high

temperature is used as the reheating threshold, which gradually decreases during the evolution. With a

higher reheating-temperature, the algorithm is allowed to accept any solution that is worse than the current

best with a higher frequency. As the reheating-temperature threshold decreases as the evolution proceeds,

the algorithm is gradually allowed to focus only on searching a limited neighborhood of best solutions with

reduced chances to accept worse solutions. As the reheating-temperature decreases, the chances of

accepting worse solutions will decrease. As a result, the search will converge after a number of user-defined

function evaluation is reached [11]. The SA algorithm has been proven to be effective in finding global

optima on multi-modality response surfaces and many real-world problems [8].The used SA code is from

the Matlab global optimization package with default reheating-temperature and tolerance settings.

The Differential Evolution (DE) algorithm is a global, evolutionary optimization algorithm which is similar

to GA and originally coined by Storn and Price [38]. The DE algorithm uses Darwin’s natural selection

theory of mutation, crossover, and selection to produce better candidates for “survival” in the scope of

fitness values. During the evolution of the DE algorithm, a mutation process is first employed to produce a

mutated offspring by adding a scaled difference between two randomly selected vectors, or individuals, to

the corresponding members in the population, called donor vectors. Then, a trial offspring, or trial vector, is

created by carrying the crossover of randomly selected parent vectors or individuals. Finally, the mutated

offspring and the trial offspring are compared and the one with better fitness value is used to update the

population [34]. The difference between DE and GA is that, in GA, the operations of crossover and

mutation of chromosomes are performed simultaneously as a group-mating process while, in DE, the

crossover and mutation jointly work as a competitive procedure to generate offspring. The DE code used in

this study was obtained from Dr. Wei Chu, which was the one used in his previous published studies [2].

Some recent developments and applications of DE algorithm are available at Poikolainen et al. [32].

2.3 Datasets and Setting

2.3.1 Datasets

In order to test the suitability of the proposed SP-UCI algorithm and investigate the suitability of different

kinds of EA-enhanced ANNs, we aggressively carried out a large-scale comparison over 17 benchmark and

real-world datasets selected from different fields. The datasets were retrieved from the UCI

machine-learning datasets repository (https://archive.ics.uci.edu/ml/datasets.html) [24], which has been

used extensively in numerous model- and algorithm-evaluation studies. The types of datasets used in this

study are all multivariable and regression. The scope of selected datasets covers life, engineering, social

sciences, and business. Table 1 lists the dataset name, number of features, target variable type, dimension of

the weight space, and the size of population for the selected datasets. The dimension of weight space

depends on the number of features in each dataset, which is shown in Eq. (6). In order to produce a fair

comparison, the population size is set to identical for all algorithms, which follows the default setting in the

SP-UCI algorithm, as shown in Eq. (7). As the number of features and complexity of databases increase, the

population size correspondingly increases, which allows all algorithms to have enough numbers of

sampling in the weight space at the beginning of the searching.

 (6)

 (7)

Table 1. Detailed information on the selected benchmark dataset from the UCI machine-learning repository

<Table 1 here, please!>

2.3.2 Experiment Design

In all performed experiments, 70% of the data is used for training the ANN model, 15% of the data is used

for validation, and the remaining 15% is held out as an independent testing dataset. To examine the

reproducibility of the comparison experiments, we first conducted 30 independent runs of each algorithm

using an identical split of training, validation, and testing datasets. Furthermore, another 30 runs were

carried out for each algorithm using randomly shuffled training, validation, and testing datasets in order to

test the predictive performances of the models using different training datasets. In other words, there is a

total of number of 60 runs performed for each algorithm. 30 of the 60 runs use identical training, validation,

and testing datasets to test the reproducibility of the experiment results. In another 30 runs, before executing

optimization algorithms, the datasets are shuffled and split into training, validation, and testing datasets to

test the reliability of algorithm performances. Last, all five EA optimization schemes (SP-UCI, PSO, GA,

SA, and DE) are implemented to the TLFFNN, and the convergence performances are compared in the

training, validation, and testing datasets, respectively.

The crossover and migration fraction rates used in GA are 0.8 and 0.2 respectively. A Gaussian mutation

scheme is used with default value of 1 for both scale and shrink rates. By default setting for PSO, the

cognitive and social attraction rates are 0.5 and 1.25, respectively. The initial temperature in SA is 100 for

each dimension. By default, the reheating temperature to the initial temperature ratio equals to 0.95 to the

power of iteration number. The crossover probability of 0.7 is used in DE. A default value of 2 is set to both

the number of simplexes in a complex, and total number of complexes in SP-UCI.

3. Results

3.1 Training and Validating Period

As mentioned above, there are a total of 30 independent runs performed for each algorithm using the same

training datasets. In Figure 2, the evolution processes of SP-UCI-, GA-, PSO-, SA-, and DE-based ANN for

one single run randomly selected among the 30 independent runs are shown, where the x-axis indicates the

number of function evaluations, and the y-axis represents the Sum of Square Errors (SSE) as objective

function values. The final converged objective function value for each algorithm is marked with colored

stars for each algorithm. A lower final-objective function value (smaller y-value) indicates a better

convergence performance. A smaller number of function evaluations (smaller x-value) means a higher

computational efficiency of the search algorithms. As shown in Figure 2, the search starts with relatively

high objective function values (error terms), and the objective function values decrease as the search

evolves. To quantitatively compare the ANN performances of the demonstrated run results in Figure 2, the

final objective function values for training, validation, and testing datasets are shown in Table 2. In Table 2,

the bold and underlined values for each row indicate the best final objective function values, i.e., the

smallest errors, achieved by all EAs on each database. The smaller the values in the training, validation, and

testing datasets, the better the convergence performances with the performed EAs.

<Figure 2 here, please!>

Figure 2. The evolution processes of SP-UCI-, GA-, PSO-, SA-, and DE-based ANN on different datasets

Table 2. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on validation and

testing datasets (bold and underlined values indicate the best statistics for each database)

<Table 2 here, please!>

Table 3. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on same training

datasets with 30 independent runs (bold and underlined values indicate the best statistics for each dataset)

<Table 3 here, please!>

Table 4. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 randomly

shuffled training datasets (bold and underlined values indicate the best statistics for each dataset)

<Table 4 here, please!>

In addition, we conducted 30 independently repeated runs to examine the reproducibility of the

demonstrated run results. The statistics of the final objective function values for each algorithm are

calculated and shown in Table 3. The calculated statistics include the mean of the final objective function

values for all 30 independent runs, and the Standard Deviation (Std). The lower the mean value, the better

convergence an algorithm can produce. The smaller the Std value, the better the consistency of reproducing

similar results. Similarly, the bold and underlined values for each row in Table 3 indicate the best (smallest)

mean and Std values for each database.

3.2 Testing Period

Using another 30 randomly shuffled datasets, the statistics of the final objective function values for each

algorithm are calculated and shown in Figure 4. The difference between the 30 independent runs and the 30

shuffled runs is that, under the scenario of independent runs, the splits of training, validation, and testing

datasets are kept identical for all 30 runs, whereas the datasets partitions are different among all 30 runs

under the shuffled scenario. The tests on 30 shuffled datasets are intended to investigate whether the

performances of algorithms are consistent if different combinations of data points in a particular dataset are

used, which is a common approach in the field of machine-learning. It is possible that one algorithm can

perform better than others on a specific combination of training data points, while the performance cannot

be achievable if different training data points are used.

Table 5. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on testing datasets

with 30 independent runs (bold and underlined values indicate the best statistics for each dataset)

<Table 5 Here, Please!>

Table 6. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 randomly

shuffled testing datasets (bold and underlined values indicate the best statistics for each dataset)

<Table 6 Here, Please!>

When comparing the best statistics (bold and underlined values) in Tables 3 and 4, there are some

differences with regard to the final convergence values, and the best performed algorithm class. This is

because the random shuffling of data points is able to construct different training databases, and to form

different regression modes for each EA. When the ANN connectivity weights are trained using different

training datasets, the performances in training, validation, and testing datasets vary from one shuffling

combination to another.

4. Discussion

4.1 Algorithm Performances

According to the training period results shown in Table 2, the SP-UCI-based ANN is able to reach the

lowest final objective function values (the smallest errors) for 12 out of 17 datasets when compared to the

results derived with other EAs-based ANN. According to the validation and testing results shown in Table

2, the SP-UCI-based ANN outperforms other algorithms-based ANNs for 11 out of 17 datasets.

Furthermore, for the datasets that SP-UCI-based ANN did not perform as the best algorithm (datasets 1, 3,

4, 5, 13, and 14 of Table 2), the final objective function values (error terms) obtained by SP-UCI-enhanced

ANN are rather comparable with the best performing model, respectively. According to the training

datasets error trajectories shown in Figure 2, generally, SP-UCI, PSO, and GA are able to find lower

objective function values than SA and DE. For most of the datasets, the final objective function values

reached by SP-UCI are slightly lower than those produced by PSO and GA.

Another interesting finding is that in some datasets, such as datasets 1, 2, 4, 5, 7, 9, and 13, SA and GA are

surprisingly fast in optimizing the objective function values, especially during the beginning 20% of the

entire evolutions. In these datasets, SP-UCI is relatively slow at the beginning of the evolutions, and the

best function values during iterations are high. Nevertheless, the evolutions of SP-UCI are able to pursue

low errors and surpass the performances of many other algorithms at the end of the search. This is because

the optimization scheme used in SP-UCI is adaptive and self-regulated during the entire evolution. In the

beginning of all runs, the search by SP-UCI focuses on a relatively large domain of parameter spaces, and

the complexes are recursively shuffled in order to exchange information of the response surface, i.e., the

current best fitness values. As the search continues, the constructed simplex in each complex becomes

smaller due to the shrinking strategy used in the Nelder-Mead simplex downhill scheme. Thus, the search

domain gradually transforms from a large-scale, global region into a smaller local area, where the search

quickly converges. As a result, the best objective function values eventually found by the simplex-complex

scheme in SP-UCI-based ANN are demonstrating the lowest against other EAs in a single run for most of

the datasets as demonstrated in Table 2.

4.2 Consistency and Reproductivity

In order to investigate the consistency and reproductivity of different EA-enhanced ANNs, we carried out

two scenario tests. Under scenario 1, we carried out 30 independent runs on each dataset using the same

training, validation, and testing datasets. Under scenario 2, another 30 runs were performed using different

shuffled data. In other words, the experiments under scenario 2 use different training, validation, and testing

datasets. The results for the training datasets for all 30 runs under scenario 1 and 2 are shown in Tables 3

and 4, respectively. Furthermore, the algorithm performances on testing datasets under scenario 1 and 2 are

shown in Tables 5 and 6, respectively.

According to the training results for 30 independent runs (Table 3) and 30 shuffled runs (Figure 4), the

mean and Std of the final optimized objective function values with SP-UCI are consistently lower than

those using other EA-based ANNs for 12 out of 17 datasets, and 11 out of 17 datasets, respectively. When

compared with the single run results shown in Table 2, some slight differences among multiple runs are

observed with regard to the best objective function values obtained by each algorithm. The differences

among different run results under the same scenario indicate the randomness and deceptiveness associated

with each single individual run due to computation and rounding errors. According to the averaged statistics

shown in Table 3, the mean and Std of final objective function values produced by SP-UCI-, PSO-, and

GA-based ANNs are consistently lower than those produced by SA- and DE-based ANNs. A lower value

on mean and Std indicates a better convergence. The averaged algorithm performances can be ranked as

SP-UCI > GA > PSO > SA > DE, if sorely based on the averaged best objective function values shown in

Table 3. Similarly, based on the averaged performances of 30 runs conducted on the shuffled training

datasets (Figure 4), the algorithm performance ranking is SP-UCI > PSO > GA > SA DE.

Despite the algorithm performances on training datasets, more importantly, the trained ANN weights are

evaluated on testing datasets to show the accuracy of model performances in practice. According to the

testing results for 30 independent runs (Table 5), SP-UCI-enhanced ANN is able to produce the lowest

mean and Std values for 12 out of 17 datasets, which suggests a superior convergence capability of

SP-UCI-based ANN over other EA-enhanced ANNs. In addition, according to the testing performances

using the trained weights from 30 shuffled datasets (Table 6), SP-UCI-enhanced ANN is able to reach the

lowest mean and Std values for 11 out of 17 datasets when compared to those with others. As shown in

Tables 5 and 6, PSO-, GA-, SA-, and DE-based ANNs are able to reach the lowest mean and Std values in a

few testing datasets individually. However, the lowest mean and Std values are not achievable at the same

time. In other words, PSO-, GA-, SA-, and DE-based ANNs sometimes can obtain the lowest mean

objective function value, but the variability of the final convergence is relatively large when repeating

multiple runs. On the contrary, an algorithm with a relatively small Std value for multiple runs does not

necessary generate the lowest errors in the testing phase. In the datasets in which SP-UCI-based ANN

outperforms other algorithm, the lowest mean and Std values are achievable simultaneously. This means

that the performance of the SP-UCI-enhanced ANN shows a consistently good convergence during the

testing phase. Based on the statistics of the final objective function values provided in Tables 5 and 6,

generally, the algorithm performances on testing datasets rank as follows: SP-UCI > GA > PSO > SA >

DE.

4.3 Uncertainties and Trade-offs

There are two main reasons for the different convergence performances using different kinds of

EAs-enhanced ANNs. One aspect is solely related to the search mechanism itself, i.e., the operators and

logic used in various EAs. Some algorithms are efficient for global optimization and some are good for

local search. Furthermore, the size of a population occasionally turns out to be sensitive and influential on

the final convergence. With a larger population, the chances of finding a better global optimum will

increase for all EAs. This is not only because the initial sampling will cover a larger parameter domain, but

also because the efficiency of information exchange on the best fitness found so far will be increased during

the entire evolution. Another uncertainty source is due to the different shapes of response surfaces that are

associated with various problems, i.e., the flatness and roughness of the objective function space. In some

of the benchmark databases, such as databases 1, 3, and 6, the objective function space is relatively flatter

than others. In other words, the difference between the objective function values in global optimum and any

randomly sampled position is small, which destructively creates many large and flat valley-shaped search

domains. The complexity of response surfaces, either the large flat valley-shape area, or the rough area with

many local minimums, will introduce huge challenges to the global convergence of each EA. For example,

with regard to databases 1, 3, and 6, the magnitudes of objective function values are very large, and the

difference between initial sampling and final minimized objective function values is relatively small. In the

training phases on these databases, the evolution processes of all types of EAs are inevitably under the risks

of pre-convergence. When producing the next generation, no single algorithm has the proper mechanism to

guarantee the discovery of the global optimum, which is possibly located in a far-away position with only

relatively small variance as compared to the current best fitness in the search domain.

It is worth mentioning that the demonstrated comparison among different EAs is subject to the famous

No-Free-Lunch (NFL) theorems [43]. According to the NFL theorem by Wolpert and Macready [43], the

enhanced performances in any algorithm on a set of problems is always offset by another set of problems.

Here, the performances refer to all possible measures that are associated with the algorithm, such as

effectiveness, efficiency, uncertainty, flexibility, reproductivity, and suitability, etc. In the practical use of

EAs, the effectiveness (convergence) and computational efficiency (speed) belong to two of the crucial

measures that users mostly concern. In our experiments, there is a conspicuous tradeoff between

convergence and speed. For example, SA- and GA-enhanced ANNs tend to have superior computational

efficiency at the beginning of the evolutions, such as on databases 1, 2, 4, 5, 9, 10, 11, 13, 14, and 16.

However, the greedy search mechanisms used in SA and GA cannot generate the lowest final converged

objective function values when compared to other EAs. In other words, the search schemes in SA and GA

are not able to guarantee the global convergence. In contrast, according to Figure 2, SP-UCI- and

PSO-based ANN are much slower than the SA- and GA-based ANN during the beginning of evolutions.

However, lower final objective function values, or a better convergence, are achievable on most of the

databases using SP-UCI- and PSO-enhanced ANN. A rational explanation is that during the beginning of

the evaluation, search strategies used in SP-UCI and PSO are more rigorously progressive, i.e., algorithm

tends to do more comprehensive and detailed search instead of forcing the population toward the fastest

gradient decreasing direction, than those used in other EAs. The strategic slowdown in the searches by

SP-UCI and PSO during the beginning of evolutions allows the algorithms to frequently reckon the best

searching directions towards the global optimum and to efficiently infer the position of global optimums in

the parameter space. The risks of population being trapped in deceptive local optimums can be reduced in

SP-UCI and PSO at the beginning of search.

5. Conclusions

In this paper, a newly developed SP-UCI-enhanced ANN is presented. The SP-UCI algorithm is an efficient

and effective global evolutionary optimization scheme, which has never been employed nor tested in the

field of tuning ANN connectivity weights. The performance of SP-UCI-enhanced ANN is proven to be

overwhelming, or at least competitive, to other commonly used EA-based ANN, including PSO, GA, SA,

and DE. The following conclusions are drawn based on the presented experiments:

(1) The SP-UCI algorithm is proven to be an efficient and effective EA with regard to producing

optimized ANN connectivity weights on most of the tested datasets.

(2) During the beginning of the evolution, SP-UCI and PSO are less efficient than others, i.e., SA and

GA. However, the final convergence turns out to be competitive at the end of the search. The

different performances are due to the differences among the searching mechanisms used in various

EAs, such as crossover, mutation, and shrinking of simplex, etc.

(3) The use of EAs in the field of ANN design includes multiple aspects, such as connectivity weight

training, ANN structure, and topography. Weight-space training is as important as the optimal

design of the ANN structure and topography.

Future works are recommended to investigate the performances of using SP-UCI-, GA-, PSO-, SA-, and

DE-enhanced ANN structure and topography designing. To the authors’ knowledge, an attempt to use

SP-UCI in optimizing ANN’s structure and topography has never been reported in the literature, as well as

the use in training ANN connectivity weights. As demonstrated in this paper, the SP-UCI algorithm is a

powerful tool in tuning ANN weights, and its usefulness in optimally designing the ANN structure is worth

investigating. A recent paper by Zhang et al. [50] also introduced a novel way of solving optimization tasks

by Neural Network. Furthermore, some recent studies conducted by Yang, et al. [47] pointed out that the

performances of the ANN combined with BP and a gradient-descent scheme are limited with regard to

monthly and seasonal streamflow prediction. They suggested that the ANN training with heuristic search

optimization schemes can be tested further, especially for the chaotic natural systems, and the complex

human decision making processes. Authors also suggest future work could be carried out to test the

SP-UCI-ANN framework on other high-nonlinear problems, such as the rainfall-runoff processes [27] and

probability distribution estimates [26]. Furthermore, different EA-enhanced ANN training can be tested on

many recent developed Recurrent Neural Network and Convolutional Neural Network for solving temporal

and spatial classification and regression problems.

Acknowledgment:

The financial support of this research are from U.S. Department of Energy (DOE Prime Award #

DE-IA0000018), California Energy Commission (CEC Award # 300-15-005), MASEEH fellowship, NSF

CyberSEES Project (Award CCF-1331915), NOAA/NESDIS/NCDC (Prime award NA09NES4400006

and NCSU CICS and subaward 2009-1380-01), and the U.S. Army Research Office (award

W911NF-11-1-0422). The authors would like to use this study as a dedication to our co-author Prof.

Xiaogang Gao for his scientific contributions to optimization, automatic model calibration, and water

resources. Prof. Xiaogang Gao recently retired after over three decades of a successful and productive

academic career. He was one of the main contributors and original developers for the SCE-UA algorithm

and its families, including the Multi-Objective Complex Evolution Algorithm (MOCOM-UA), the Shuffled

Complex Evolutionary Algorithm with Principal Component Analysis (SP-UCI), and the Multi-Objective

Complex Evolution Algorithm with Principal Component Analysis and Crowding Distance

(MOSPD-UCI).

References:

 [1] A. Cichocki and S.-i. Amari, Adaptive blind signal and image processing: learning algorithms and

applications vol. 1: John Wiley & Sons, 2002.

 [2] W. Chu, X. Gao, and S. Sorooshian, "A new evolutionary search strategy for global optimization of

high-dimensional problems," Information Sciences, vol. 181, pp. 4909-4927, 2011.

[3] W. Chu, T. Yang, and X. Gao, "Comment on “High‐ dimensional posterior exploration of hydrologic

models using multiple‐ try DREAM (ZS) and high‐ performance computing” by Eric Laloy and Jasper

A. Vrugt," Water Resources Research, vol. 50, pp. 2775-2780, 2014.

[4] C. Dai, W. Chen, Y. Zhu, Z. Jiang, and Z. You, "Seeker optimization algorithm for tuning the structure

and parameters of neural networks," Neurocomputing, vol. 74, pp. 876-883, 2011.

[5] S. Ding, H. Li, C. Su, J. Yu, and F. Jin, "Evolutionary artificial neural networks: a review," Artificial

Intelligence Review, vol. 39, pp. 251-260, 2013.

[6] Q. Duan, S. Sorooshian, and V. Gupta, "Effective and efficient global optimization for conceptual

rainfall‐ runoff models," Water resources research, vol. 28, pp. 1015-1031, 1992.

 [7] R. C. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," in Proceedings of the

sixth international symposium on micro machine and human science, 1995, pp. 39-43.

 [8] R. Eglese, "Simulated annealing: a tool for operational research," European journal of operational

research, vol. 46, pp. 271-281, 1990.

 [9] D. B. Fogel, Evolutionary computation: toward a new philosophy of machine intelligence vol. 1: John

Wiley & Sons, 2006.

[10]D. E. Golberg, "Genetic algorithms in search, optimization, and machine learning," Addion wesley, vol.

1989, p. 102, 1989.

[11] V. Granville, M. Krivánek, and J.-P. Rasson, "Simulated annealing: A proof of convergence," IEEE

transactions on pattern analysis and machine intelligence, vol. 16, pp. 652-656, 1994.

[12] V. G. Gudise and G. K. Venayagamoorthy, "Comparison of particle swarm optimization and

backpropagation as training algorithms for neural networks," in Swarm Intelligence Symposium, 2003.

SIS'03. Proceedings of the 2003 IEEE, 2003, pp. 110-117.

[13] H. V. Gupta, H. Kuo-lin, and S. Sorooshian, "Superior training of artificial neural networks using

weight-space partitioning," in Neural Networks,1997., International Conference on, 1997, pp.

1919-1923 vol.3.

 [14] Y. Hirose, K. Yamashita, and S. Hijiya, "Back-propagation algorithm which varies the number of

hidden units," Neural Networks, vol. 4, pp. 61-66, 1991.

 [15] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, "Differential evolution training algorithm for

feed-forward neural networks," Neural Processing Letters, vol. 17, pp. 93-105, 2003.

[16] A. K. Jain, R. P. W. Duin, and J. Mao, "Statistical pattern recognition: A review," IEEE Transactions

on pattern analysis and machine intelligence, vol. 22, pp. 4-37, 2000.

 [17] A. Jain and S. Srinivasulu, "Development of effective and efficient rainfall-runoff models using

integration of deterministic, real-coded genetic algorithms and artificial neural network techniques,"

Water Resources Research, vol. 40, pp. n/a-n/a, 2004.

[18] E. M. Johansson, F. U. Dowla, and D. M. Goodman, "Backpropagation learning for multilayer

feed-forward neural networks using the conjugate gradient method," International Journal of Neural

Systems, vol. 2, pp. 291-301, 1991.

[19] I. Jolliffe, Principal component analysis: Wiley Online Library, 2002.

[20] J. Kennedy, J. F. Kennedy, R. C. Eberhart, and Y. Shi, Swarm intelligence: Morgan Kaufmann, 2001.

[21] J. Kennedy, "Particle swarm optimization," in Encyclopedia of machine learning, ed: Springer, 2011,

pp. 760-766.

 [22] S. Kirkpatrick, "Optimization by simulated annealing: Quantitative studies," Journal of statistical

physics, vol. 34, pp. 975-986, 1984.

[23] S. Lek and J. F. Guegan, "Artificial neural networks as a tool in ecological modelling, an introduction,"

Ecological Modelling, vol. 120, pp. 65-73, Aug 17 1999.

[24] M. Lichman, "UCI machine learning repository," ed, 2013.

[25] R. Lippmann, "An introduction to computing with neural nets," IEEE Assp magazine, vol. 4, pp. 4-22,

1987.

[26] X. Liu, Y. Luo, T. Yang, K. Liang, M. Zhang, and C. Liu. "Investigation of the probability of

concurrent drought events between the water source and destination regions of China's water diversion

project." Geophysical Research Letters 42, no. 20 (2015): 8424-8431.

[27] X. Liu, T. Yang, K. Hsu, C Liu, and S. Sorooshian. "Evaluating the streamflow simulation capability of

PERSIANN-CDR daily rainfall products in two river basins on the Tibetan Plateau." Hydrology and

Earth System Sciences 21, no. 1 (2017): 169-181.

 [28] H. R. Maier and G. C. Dandy, "Neural networks for the prediction and forecasting of water resources

variables: a review of modelling issues and applications," Environmental modelling & software, vol. 15,

pp. 101-124, 2000.

 [29] W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity," The

bulletin of mathematical biophysics, vol. 5, pp. 115-133, 1943.

 [30] J. A. Nelder and R. Mead, "A simplex method for function minimization," The computer journal, vol.

7, pp. 308-313, 1965.

[31] M. A. Panduro, C. A. Brizuela, L. I. Balderas, and D. A. Acosta, "A comparison of genetic algorithms,

particle swarm optimization and the differential evolution method for the design of scannable circular

antenna arrays," Progress In Electromagnetics Research B, vol. 13, pp. 171-186, 2009.

[32] L. Poikolainen, F. Neri, and F. Caraffini. "Cluster-based population initialization for differential

evolution frameworks." Information Sciences 297: 216-235.,2015.

 [33] L. Y. Pratt, Comparing biases for minimal network construction with back-propagation vol. 1:

Morgan Kaufmann Pub, 1989.

[34] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution: a practical approach to global

optimization: Springer Science & Business Media, 2006.

 [35] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error

propagation," DTIC Document1985.

 [36] A. R. Simpson, G. C. Dandy, and L. J. Murphy, "Genetic algorithms compared to other techniques

for pipe optimization," Journal of water resources planning and management, vol. 120, pp. 423-443,

1994.

[37] A. Slowik and M. Bialko, "Training of artificial neural networks using differential evolution

algorithm," in Human System Interactions, 2008 Conference on, 2008, pp. 60-65.

[38] R. Storn and K. Price, "Differential evolution–a simple and efficient heuristic for global optimization

over continuous spaces," Journal of global optimization, vol. 11, pp. 341-359, 1997.

[39] M. D. Sulistiyo and R. N. Dayawati, "Evolution strategies for weight optimization of Artificial Neural

Network in time series prediction," in Robotics, Biomimetics, and Intelligent Computational Systems

(ROBIONETICS), 2013 IEEE International Conference on, 2013, pp. 143-147.

[40] R. S. Sutton, "Two problems with backpropagation and other steepest-descent learning procedures for

networks," in Proc. 8th annual conf. cognitive science society, 1986, pp. 823-831.

[41] P. Werbos, "Beyond regression: New tools for prediction and analysis in the behavioral sciences,"

1974.

[42] D. Whitley, T. Starkweather, and C. Bogart, "Genetic algorithms and neural networks: Optimizing

connections and connectivity," Parallel computing, vol. 14, pp. 347-361, 1990.

[43] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE transactions on

evolutionary computation, vol. 1, pp. 67-82, 1997.

[44] B. J. Wythoff, "Backpropagation neural networks: a tutorial," Chemometrics and Intelligent

Laboratory Systems, vol. 18, pp. 115-155, 1993.

[45] X. Yao, "Evolving artificial neural networks," Proceedings of the IEEE, vol. 87, pp. 1423-1447, 1999.

[46] T. Yang, X. Gao, S. L. Sellars, and S. Sorooshian, "Improving the multi-objective evolutionary

optimization algorithm for hydropower reservoir operations in the California Oroville–Thermalito

complex," Environmental Modelling & Software, vol. 69, pp. 262-279, 2015.

[47] T. Yang, A.A. Asanjan, A., E. Welles, X. Gao, S. Sorooshian, and X. Liu, "Developing reservoir

monthly inflow forecasts using Artificial Intelligence and Climate Phenomenon Information." Water

Resour. Res., 53, 2786–2812. doi:10.1002/2017WR020482, 2017

[48] T. Yang, X. Gao, S. Sorooshian, and X. Li, "Simulating California reservoir operation using the

classification and regression-tree algorithm combined with a shuffled cross-validation scheme", Water

Resour. Res., 52, 1626–1651, doi:10.1002/2015WR017394., 2016

[49] T. Yang, Y. Tao, J. Li, Q. Zhu, L. Su, X. He, and X. Zhang. "Multi-criterion model ensemble of CMIP5

surface air temperature over China." Theoretical and Applied Climatology (2017): 1-16.

[50] G. Zhang, H. Rong, F. Neri, and M.J. Pérez-Jiménez, “An optimization spiking neural P system for

approximately solving combinatorial optimization problems”. International Journal of Neural

Systems, 24(05), p.1440006., 2014.

Vitae:

Dr. Tiantian Yang was born in Beijing, China, in 1987. He received the B.S. and M.S.

degree in mechanical engineering from Tsinghua University, Beijing, China in 2009, and

from University of California, Irvine, in 2010, respectively. In 2015, he received his

Ph.D. degree in civil engineering from University of California, Irvine with focus on Civil

Engineering and water resources. From 2015 to present, he is a project scientist in the Henry Samueli

School of Engineering at University of California-Irvine, Irvine, CA92687, U.S.A., and a research scientist

at Deltares USA Inc, Silver Spring, Maryland, U.S.A.. Dr. Tiantian Yang’s research focuses on

optimization, artificial neural network, evolutionary computation, machine learning, data-mining, reservoir

decision making, hydropower operation, water resources management, and climate change.

Mr. Ata Akbari Asanjan was born in Tabriz, Iran in 1991. He received the B.S. in civil

engineering-water resources from University of Tabriz, Iran in 2014 and the M.S. degree

in civil engineering-water resources from University of California Irvine, Irvine, CA in

2016. He is currently pursuing Ph.D. in civil engineering-water resources in University

of California Irvine. His main research interests are sequence learning and machine learning for

classification/regression in hydrometeorology.

Mr. Mohammad Faridzad was born in Tehran, Iran, in 1988. He received the B.S.

degree in civil engineering from AmirKabir University of Technology, in 2011 and the

M.S. degree in environmental engineering from Sharif University of Technology,

Tehran, Iran, in 2013. He is currently a research assistant and pursuing his Ph.D. degree

in Hydrology and water resources engineering at the Center for Hydrometeorolog and

Remote Sensing(CHRS) at University of California, Irvine. Mr. Faridzad is a member of American

Geophysical Union(AGU) and was the recipient of MASEEH fellowship for his PhD studies in 2015.

Ms. Negin Hayatbini was born in Tehran, Iran, in 1990. She received her B.S. degree

in civil engineering from National Zanjan University, Zanjan, Iran, in 2011 and the

M.S. degree in civil engineering in Hydraulic Structures major from Sharif University

of technology, Tehran, Iran, in 2014. She is currently pursuing her Ph.D. degree in Civil

engineering, Hydrology major at University of California, Irvine.Ms. Hayatbini is member of American

Geophysical Union (AGU) since 2014, and is the recipient of the MASEEH fellowship from the University

of California, Irvine.

Dr. Xiaogang Gao (retired) was born in Shanghai,China. He received the Ph.D. degree

from the Department of Hydrology and Water Resources, University of Arizona, Tucson,

in 1993. Since 2003, he has been a Professor in the Department of Civil and

Environmental Engineering, University of California, Irvine. His research interests

include hydrology and water resource management, coupled atmosphere-land surface modeling,

optimization, and statistical data assimilation. Dr.Xiaogang Gao was a member of American Geophysical

Union (AGU), a member of American Meteorology Society (AMS), and a member of American Society of

Civil and Engineers (ASCE).

Dr. Soroosh Sorooshian was born in Kerman, Iran, in 1949. He received a B.S. in

Mechanical Engineering from California State Polytechnic University. He received a

M.S., an Engineer Degree, and a Ph.D. from University of California, Los Angeles,

focusing on Operations Research, Systems Engineering and Engineering, respectively.

Dr. Soroosh Sorooshian’s expertise and the research focuses of his team include artificial intelligence,

optimization, hydrometeorology, water resources systems, hydropower, climate studies and application of

artificial intelligence techniques to earth science problems with special focus on the hydrologic cycle and

water resources issues of arid and semi-arid zones.

Table 1. Detailed information on the selected benchmark datasets from UCI machine learning repository

Dataset

No.
Name

No.

Features

Target

Variable Type

Weight

Space

Dimension

Population

Size

1 Airfoil Self-Noise 5 Real 64 258

2 Auto MPG 7 Real 82 330

3 Automobile 22 Real 217 870

4 Breast Cancer Wisconsin

(Prognostic)
10 Integer 109 438

5 Challenger USA Space Shuttle

O-Ring
3 Integer 46 186

6 Combined Cycle Power Plant 4 Real 55 222

7 Computer Hardware 9 Integer 100 330

8 Concrete Slump Test (Strength) 7 Real 82 330

9 Concrete Slump Test (Slump) 7 Real 82 330

10 Concrete Slump Test (Flow) 7 Real 82 330

11 Concrete Compressive Strength 8 Real 91 366

12 Fertility 9 Integer 100 402

13 Forest Fires 10 Real 109 438

14 Housing 13 Real 136 546

15 ISTANBUL STOCK EXCHANGE 7 Real 82 330

16 Energy efficiency (Heating Load) 8 Real 91 366

17 Energy efficiency (Cooling Load) 8 Real 91 366

Table 2. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on

validation and testing datasets (bold and underlined values indicate the best statistics for each

database)

Datas

et

No.

SP-UCI PSO GA SA DE

 Train Val. Test Train Val. Test Train Val. Test Train Val. Test Train Val. Test

1
9.274e

4
2.037

e4
4.076

e4
9.277e

4
2.037

e4
4.077

e4
9.274e

4

2.037
e4

4.076

e4

9.274e
4

2.037

e4

4.076
e4

9.274e
4

2.037
e4

4.076
e4

2
4.681e

3

9.171

e2

1.925
e3

4.801e
3

9.404
e2

1.975
e3

4.700e
3

9.192
e2

1.921

e3

4.795e
3

9.499
e2

1.955
e3

5.152e
3

1.024
e3

2.144
e3

3
1.644e

8

6.155

e7

7.972

e7

1.644e

8

3.916

e7

7.969

e7
1.644e

8

3.916

e7

7.969

e7

1.644e

8

3.916

e7
7.969

e7

1.644e

8

3.916

e7

7.969

e7

4
2.117e

2

1.754

e1

1.205

e2
2.128e

1

3.150

e0

1.521

e1

7.179e

1

1.603

e1

5.686

e1

4.059e

1

9.198

e0

2.121

e1

2.148e

2

5.469

e1

5.374

e1

5
0.000e

0

5.000
e-1

1.000
e0

2.450e
1

4.500
e0

1.300
e1

0.000e

0

0.000

e0

0.000

e0

1.750e
1

5.500
e0

1.200
e1

1.250e
1

5.000
e-1

2.000
e0

6
6.687e

6

1.431

e6

2.863

e6

6.700e

6

1.433

e6

2.869

e6

6.696e

6

1.432

e6

2.873

e6

6.709e

6

1.435

e6

2.872

e6

6.698e

6

1.433

e6

2.868

e6

7
1.968e

5

3.057

e4

6.118

e4

1.989e

5

3.106

e4

6.217

e4

1.977e

5

3.078

e4

6.154

e4

1.976e

5

3.076

e4

6.155

e4

1.977e

5

3.075

e4

6.155

e4

8
3.064e

4

6.379

e3

1.331

e4

3.397e
4

6.969
e3

1.457
e4

3.271e
4

6.768
e3

1.372
e4

3.205e
4

6.612
e3

1.383
e4

3.198e
4

6.586
e3

1.374
e4

9
5.972e

3

1.582

e3

3.411

e3

7.536e

3

1.982

e3

4.276

e3

7.091e

3

1.982

e3

3.552

e3

6.463e

3

1.879

e3

3.691

e3

7.461e

3

1.968

e3

4.228

e3

10
7.118e

4

1.511

e4

3.231

e4

7.436e

4

1.573

e4

3.379

e4

7.312e

4

1.608

e4

3.316

e4

7.397e

4

1.569

e4

3.377

e4

7.558e

4

1.599

e4

3.426

e4

11
3.728e

5

7.226

e4

1.481

e5

3.993e
5

7.786
e4

1.594
e5

4.101e
5

7.997
e4

1.542
e5

3.929e
5

7.648
e4

1.567
e5

3.998e
5

7.789
e4

1.595
e5

12
7.500e

0

3.000

e0

6.000

e0

1.250e

1

5.500

e0

1.100

e1

1.250e

1

3.000

e0

7.000

e0

1.000e

1

3.500

e0

7.000

e0

1.550e

1

7.000

e0

1.400

e1

13
1.017e

4

3.377

e2

6.764

e2

1.017e

4

3.344

e2

6.701

e2
1.015e

4

3.318

e2
6.605

e2

1.016e

4
3.311

e2

6.611

e2

1.016e

4

3.311

e2

6.638

e2

14
5.327e

3
1.316

e3
2.659

e3

5.292e

3

1.308

e3

3.015
e3

5.925e
3

1.455
e3

2.942
e3

6.082e
3

1.515
e3

3.060
e3

6.304e
3

1.561
e3

3.157
e3

15
2.947e

-2

5.173

e-3

1.051

e-2

3.213e

-2

5.231

e-3

1.068

e-2

3.158e

-2

5.100

e-3

8.059

e-2

4.487e

-1

1.084

e-1

2.178

e-1

4.318e

-1

9.219

e-2

1.864

e-1

16
7.737e

3

1.751

e3

3.502

e3

9.069e

3

2.049

e3

4.099

e3

9.225e

3

2.077

e3

3.670

e3

8.422e

3

1.904

e3

3.808

e3

8.697e

3

1.952

e3

3.903

e3

17
9.674e

3

2.089

e3

4.250

e3

1.045e
4

2.255
e3

4.590
e3

1.079e
4

2.328
e3

4.356
e3

1.039e
4

2.237
e3

4.550
e3

1.029e
4

2.214
e3

4.501
e3

Table 3. Statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on same

training datasets with 30 independent runs (bold and underlined values indicate the best statistics

for each dataset)

Datas

et

No.

SP-UCI PSO GA SA DE

 Mean Std Mean Std Mean Std Mean Std Mean Std

1
9.276e

4

2.330e

1

9.276e

4

1.824e

1

9.275e

4
3.185e

1

9.274e

4

8.890e

1

9.282e

4

6.361e

1

2
5.209e

3

4.456e

2

4.746e

3

2.162e

2
4.709e

3

1.016e

2

4.885e

3

2.082e

2

6.452e

3
9.893e

1

3
1.644e

8

2.861e

3

1.644e

8

6.585e

3
1.644e

8

1.740e

3

1.644e

8

5.780e

3

1.644e

8

1.748e

3

4
2.005e

2

7.283e

1
2.012e

1

1.179e

0

5.951e

1

8.910e

0

3.475e

1

3.609e

0

2.157e

2

2.963e

1

5
0.000e

0

0.000e

0

2.322e

1

1.726e

1

0.000e

0

0.000e

0

1.517e

1

4.496e

0

3.900e

1

6.282e

0

6
6.687e

6

3.759e

2

6.719e

6

1.444e

2

6.712e

6

4.427e

2

6.705e

6

8.106e

2

6.777e

6

5.497e

2

7
1.968e

5

1.461e

2

1.983e

5

5.920e

2

1.976e

5

1.431e

2

1.979e

5

3.127e

2

2.017e

5

2.162e

2

8
3.064e

4

3.267e

0

3.334e

4

1.007e

3

3.183e

4

4.309e

2

3.265e

4

6.008e

2

3.920e

4

4.059e

2

9
7.119e

4

6.991e

0

7.540e

4

1.232e

3

7.302e

4

5.268e

2

7.432e

4

7.268e

2

8.328e

4

4.709e

2

10
5.972e

3

1.485e

0

6.947e

3

3.235e

2

6.274e

3

9.549e

1

6.449e

3

2.654e

2

9.421e

3

1.849e

2

11
3.728e

5

7.086e

1

4.032e

5

8.860e

3

3.878e

5

3.818e

3

3.962e

5

5.490e

3

4.592e

5

3.071e

3

12
7.333e

0

1.011e

0

1.082e

1

2.365e

0

9.600e

0

2.444e

0

1.557e

1

1.837e

0

2.167e

1

1.184e

0

13
1.025e

4

3.709e

1

1.016e

4

1.201e

1
1.015e

4

3.405e

1

1.017e

4

1.003e

1

1.031e

4

8.998e

1

14
5.295e

3

1.611e

1

6.299e

3

1.751e

2

5.802e

3

1.444e

2

6.148e

3

1.323e

2

7.819e

3

6.950e

1

15
2.891e

-2

5.370e

-4

3.555e

-2

5.841e

-3

1.719e

-1

9.424e

-2

4.561e

-1

1.146e

-1

4.977e

-1

2.009e

-1

16
7.740e

3

2.162e

0

8.673e

3

4.176e

2

8.130e

3

1.703e

2

8.573e

3

2.580e

2

1.132e

4

1.227e

2

17
9.674e

3

1.936e

0

1.085e

4

4.106e

2

1.006e

4

1.422e

2

1.055e

4

2.295e

2

1.367e

4

1.426e

2

Table 4. Statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30

randomly shuffled training datasets (bold and underlined values indicate the best statistics for each

dataset)

Datas

et

No.

SP-UCI PSO GA SA DE

 Mean Std Mean Std Mean Std Mean Std Mean Std

1
9.430e

4
4.012e

3

9.430e

4

4.013e

3

9.429e

4

4.015e

3
9.428e

4

4.013e

3

9.436e

4

4.015e

3

2
5.048e

3

3.014e

2

4.813e

3

2.364e

2
4.764e

3

1.587e

2

4.879e

3

2.347e

2

6.477e

3

1.669e

2

3
1.654e

8

1.039e

7
1.653e

8

1.039e

7

1.653e

8

1.039e

7

1.653e

8

1.039e

7

1.654e

8

1.039e

7

4
2.053e

2

7.311e

1
1.917e

1

3.105e

0

6.187e

1

6.893e

0

3.299e

1

3.701e

0

2.358e

2

3.694e

1

5
0.000e

0

0.000e

0

2.082e

1

1.625e

1

3.333e

1

1.269e

-1

1.433e

1

4.346e

0

4.027e

1

5.338e

0

6
6.687e

6

3.936e

3

6.718e

6

1.168e

4

6.712e

6

6.154e

3

6.707e

6

9.431e

3

6.778e

6

5.365e

3

7
2.392e

5

5.238e

4

2.405e

5

5.257e

4

2.399e

5

5.245e

4

2.402e

5

5.248e

4

2.442e

5

5.272e

4

8
3.074e

4

9.256e

2

3.374e

4

1.336e

3

3.191e

4

1.040e

3

3.297e

4

1.263e

3

3.930e

4

1.282e

3

9
7.321e

4

3.355e

3

7.712e

4

3.469e

3

7.511e

4

3.506e

3

7.656e

4

3.405e

3

8.541e

4

3.848e

3

10
6.126e

3

3.306e

2

7.196e

3

4.599e

2

6.458e

3

3.947e

2

6.561e

3

3.914e

2

9.659e

3

4.943e

2

11
3.759e

5

8.848e

3

4.051e

5

1.286e

4

3.890e

5

9.930e

3

3.991e

5

1.168e

4

4.621e

5

9.634e

3

12
1.440e

0

1.030e

1

3.253e

0

8.650e

0

2.649e

0

1.477e

1

2.250e

0

2.067e

1

3.174e

0

1.440e

0

13
7.174e

3

3.299e

3

7.112e

3

3.277e

3
7.103e

3

3.272e

3

7.119e

3

3.278e

3

7.228e

3

3.304e

3

14
5.121e

3

2.166e

2

6.102e

3

3.157e

2

5.607e

3

2.781e

2

5.868e

3

2.598e

2

7.589e

3

3.029e

2

15
2.992e

-2

1.520e

-3

4.042e

-2

1.222e

-2

1.964e

-1

2.016e

-1

4.444e

-1

1.910e

-1

5.226e

-1

1.695e

-1

16
7.985e

3

2.011e

2

9.104e

3

3.787e

2

8.324e

3
1.904e

2

8.841e

3

3.501e

2

1.156e

4

2.746e

2

17
9.687e

3

1.929e

2

1.101e

4

4.565e

2

1.012e

4

2.740e

2

1.057e

4

3.876e

2

1.364e

4

2.506e

2

Table 5. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on testing

datasets with 30 independent runs (bold and underlined values indicate the best statistics for each

dataset)

Datas

et

No.

SP-UCI PSO GA SA DE

 Mean Std Mean Std Mean Std Mean Std Mean Std

1
4.077e

4

1.006e

2

4.077e

4

7.877e

2
4.076e

4

1.375e

2

4.076e

4

3.838e

2

4.079e

4

2.724e

2

2
2.163e

3

1.942e

2

1.958e

3

9.402e

1
1.946e

3

4.604e

1

2.024e

3

9.280e

1

2.688e

3
3.678e

1

3
7.971e

7

1.669e

3
7.969e

7

3.160e

3

7.969e

7
1.477e

3

7.969e

7

3.359e

3

7.971e

7

1.507e

3

4
7.350e

9

1.693e

9
7.348e

9

1.692e

9

7.348e

9

1.692e

9

7.348e

9

1.692e

9

7.350e

9

1.693e

9

5
1.565e

-3

3.522e

-3

4.454e

-2

7.985e

-2

3.440e

-2

2.634e

-2

3.344e

0

1.261e

0

1.879e

1

2.956e

0

6
2.863e

5

1.531e

2

2.877e

5

6.196e

2

2.874e

5

1.891e

2

2.871e

5

3.489e

2

2.901e

5

2.353e

2

7
6.118e

4

9.268e

0

6.181e

4

2.635e

2

6.154e

4

6.462e

1

6.163e

4

1.322e

2

6.337e

4

1.303e

2

8
1.331e

4

9.561e

0

1.437e

4

4.110e

2

1.386e

4

1.835e

2

1.405e

4

2.755e

2

1.683e

4

2.239e

2

9
3.232e

4

1.671e

1

3.419e

4

5.558e

2

3.318e

4

2.231e

2

3.372e

4

3.316e

2

3.772e

4

2.846e

2

10
3.412e

3

3.412e

0

3.923e

3

1.848e

2

3.606e

3

5.379e

1

3.635e

3

1.636e

2

5.315e

3

1.306e

2

11
1.481e

5

3.573e

1

1.611e

5

3.651e

3

1.543e

5

1.603e

3

1.583e

5

2.310e

3

1.839e

5

1.222e

3

12
6.533e

0

1.833e

0

1.140e

1

3.701e

0

1.033e

1

2.578e

0

1.317e

1

3.869e

0

1.503e

1

3.996e

0

13
6.900e

2

1.106e

1

6.633e

2

7.417e

0
6.601e

2

2.869e

0

6.659e

2

6.209e

0

7.077e

2

7.173e

0

14
2.645e

3

6.922e

0

3.141e

3

8.570e

1

2.884e

3

7.197e

1

3.070e

3

6.617e

1

3.838e

3

3.599e

1

15
9.792e

-3

6.460e

-4

1.247e

-2

2.683e

-3

8.007e

-2

4.316e

-2

1.957e

-1

5.547e

-2

2.302e

-1

1.031e

-1

16
3.504e

3

9.936e

0

3.915e

3

1.866e

2

3.672e

3

7.427e

1

3.870e

3

1.135e

2

5.081e

3

5.324e

1

17
4.250e

3

8.970e

0

4.758e

3

1.774e

2

4.415e

3

6.056e

1

4.625e

3

1.006e

2

5.967e

3

5.800e

1

Table 6. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30

randomly shuffled testing datasets (bold and underlined values indicate the best statistics for each

dataset)

Datas

et

No.

SP-UCI PSO GA SA DE

 Mean Std Mean Std Mean Std Mean Std Mean Std

1
3.999e

4

7.466e

3

3.999e

4

7.467e

3
3.998e

4

7.467e

3

3.998e

4
7.466e

3

4.001e

4

7.469e

3

2
2.278e

3

3.094e

2

2.170e

3

2.738e

2
2.153e

3

2.723e

2

2.202e

3

2.836e

2

2.911e

3

2.996e

2

3
7.350e

7

1.693e

7
7.348e

7

1.692e

7

7.348e

7

1.692e

7

7.348e

7

1.692e

7

7.350e

7

1.693e

7

4
9.400e

1

3.448e

1
9.540e

0

4.293e

0

3.142e

1

9.018e

0

1.579e

1

4.770e

0

1.053e

2

2.137e

1

5
3.079e

-2

9.076e

-2

1.326e

-1

2.275e

-1

1.306e

-1

1.176e

-1

2.415e

0

1.629e

0

1.532e

1

3.321e

0

6
2.868e

6

4.896e

3

2.881e

6

7.687e

3

2.879e

6

5.447e

3

2.876e

6

7.058e

3

2.907e

6

5.042e

3

7
1.059e

5

8.693e

4

1.064e

5

8.706e

4

1.062e

5

8.701e

4

1.063e

5

8.706e

4

1.080e

5

8.763e

4

8
1.405e

4

2.004e

3

1.536e

4

2.139e

3

1.461e

4

2.085e

3

1.504e

4

2.116e

3

1.784e

4

2.303e

3

9
3.359e

4

4.136e

3

3.536e

4

4.241e

3

3.452e

4

4.218e

3

3.515e

4

4.364e

3

3.908e

4

4.567e

3

10
2.669e

3

4.976e

2

3.144e

3

5.768e

2

2.842e

3

5.347e

2

2.872e

3

5.329e

2

4.219e

3

7.515e

2

11
1.606e

5

1.128e

4

1.732e

5

1.247e

4

1.663e

5

1.164e

4

1.707e

5

1.218e

4

1.976e

5

1.251e

4

12
4.167e

0

3.364e

0

5.833e

0

4.511e

0

6.100e

0

3.566e

0

8.000e

0

5.003e

0

1.013e

1

5.158e

0

13
3.906e

3

5.208e

3

3.879e

3

5.188e

3
3.871e

3

5.184e

3

3.879e

3
5.183e

3

3.934e

3

5.226e

3

14
2.244e

3

3.286e

2

2.665e

3
3.146e

2

2.454e

3

3.375e

2

2.572e

3

3.472e

2

3.317e

3

3.900e

2

15
1.426e

-2

2.604e

-3

1.936e

-2

7.741e

-3

9.397e

-2

9.266e

-2

1.948e

-1

8.239e

-2

2.381e

-1

9.637e

-2

16
3.537e

3

3.384e

2

4.025e

3

3.857e

2

3.685e

3

3.521e

2

3.907e

3

3.427e

2

5.088e

3

4.018e

2

17
4.171e

3

2.956e

2

4.741e

3

3.175e

2

4.356e

3

3.162e

2

4.548e

3

3.486e

2

5.881e

3

3.705e

2

