
 

Accepted Manuscript

An Enhanced Artificial Neural Network with A Shuffled Complex
Evolutionary Global Optimization with Principal Component Analysis

Tiantian Yang , Ata Akabri Asanjan , Mohammad Faridzad ,
Negin Hayatbini , Xiaogang Gao , Soroosh Sorooshian

PII: S0020-0255(16)31351-2
DOI: 10.1016/j.ins.2017.08.003
Reference: INS 13007

To appear in: Information Sciences

Received date: 18 October 2016
Revised date: 25 July 2017
Accepted date: 1 August 2017

Please cite this article as: Tiantian Yang , Ata Akabri Asanjan , Mohammad Faridzad ,
Negin Hayatbini , Xiaogang Gao , Soroosh Sorooshian , An Enhanced Artificial Neural Network
with A Shuffled Complex Evolutionary Global Optimization with Principal Component Analysis,
Information Sciences (2017), doi: 10.1016/j.ins.2017.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2017 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0020025516313512
Manuscript_a8575b0d58eaf218d7f477ed7b872c8c

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0020025516313512


 
Highlights 

 

 Heuristic global optimization schemes are able to remedy some drawbacks of back-propagation 

used in ANN.  

 An enhanced ANN training scheme is proposed using an efficient global optimization scheme. 

 The proposed SP-UCI-enahnced ANN shows better performances than the GA-, PSO-, SA-, and 

DE-based ANN. 

 The heuristic search optimization schemes are universally adaptable for other types of ANNs. 
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Abstract 

The classical Back-Propagation (BP) scheme with gradient-based optimization in training Artificial Neural 

Networks (ANNs) suffers from many drawbacks, such as the premature convergence, and the tendency of 

being trapped in local optimums. Therefore, as an alternative for the BP and gradient-based optimization 

schemes, various Evolutionary Algorithms (EAs), i.e., Particle Swarm Optimization (PSO), Genetic 

Algorithm (GA), Simulated Annealing (SA), and Differential Evolution (DE), have gained popularity in the 

field of ANN weight training. This study applied a new efficient and effective Shuffled Complex 

Evolutionary Global Optimization Algorithm with Principal Component Analysis – University of 

California Irvine (SP-UCI) to the weight training process of a three-layer feed-forward ANN. A large-scale 

numerical comparison is conducted among the SP-UCI-, PSO-, GA-, SA-, and DE-based ANNs on 17 

benchmark, complex, and real-world datasets. Results show that SP-UCI-based ANN outperforms other 

EA-based ANNs in the context of convergence and generalization. Results suggest that the SP-UCI 

algorithm possesses good potential in support of the weight training of ANN in real-word problems. In 

addition, the suitability of different kinds of EAs on training ANN is discussed. The large-scale comparison 

experiments conducted in this paper are fundamental references for selecting proper ANN weight training 

algorithms in practice. 

Keywords: SP-UCI, Evolutionary Algorithm; Artificial Neural Networks; Weight Training; Global 

Optimization 

 

 

1. Introduction 

The Artificial Neural Network (ANN) is a powerful, nonlinear, and adaptive mathematical predictive 

model that was inspired by the neurological structure of the human brain. According to the literature, the 

ANNs have been used extensively and successfully in various fields, including pattern recognition [16], 



image processing [1], ecological modeling [23], and water resources management [47], etc. During the 

development of ANNs, one of the significant advances is the implementation error BP concept [35]. In 

Rumelhart, et al. [35], several neural networks were tested with the BP scheme, in which the output-layer 

errors were purposely propagated into hidden-layers, and the optimal weights in the complete ANN were 

derived with gradient descent optimization. Furthermore, Rumelhart, et al. [35] demonstrated that the BP 

scheme worked far faster than earlier approaches for training ANNs, and made it possible to use neural 

networks to solve problems that had been unsolvable in many fields. However, one of the drawbacks 

associated with BP and gradient-based optimizations is that the search tends to become stuck in local 

optimums, and optimization strategy lacks the capability to escape from local attractions. To optimization 

the ANN cost function is a complex, non-differentiable, and multi-modal problem. Therefore, the use of 

gradient-based optimizations is skeptical [40, 44]. Furthermore, BP and gradient-based optimization 

schemes are extremely sensitive to initial conditions [18] and the prediction accuracy will dramatically 

decrease as the number of hidden neurons increases when using BP and gradient-based optimization 

schemes [14].    

 

Given these aforementioned weaknesses of BP and gradient-based optimization schemes used in classical 

ANN training, during the last decade, many researchers and model developers have been attempting to use 

different types of EAs, such as GA, PSO, SA, and DE, as the alternatives for the BP in the ANN weight 

training process. According to the literature, Ding, et al. [5] reviewed the many uses of EAs in optimizing 

ANNs weights, and pointed out that the BP algorithm appeared to be more effective when used in local 

searches, while the GA was good for global searches. Ilonen, et al. [15] compared a DE algorithm against 

the classical gradient-based methods in the training process of a Feed-Forward Neural Network and 

concluded that the optimal weights found by DE were always equal to or better than the initial optimal 

weights found by the gradient-based methods when the computational time was relaxed. Gudise and 

Venayagamoorthy [12] compared the computational efficiency of ANNs using PSO and BP in learning a 

non-linear function, and they proved that PSO was a faster-learning algorithm than the BP scheme. Jain and 



Srinivasulu [17] employed a GA in ANN rainfall-runoff models and proved that the ANN trained with the 

GA was able to obtain more accurate, low-magnitude flow simulation than the ANN trained with the BP 

scheme in the Kentucky River watershed. Slowik and Bialko [37] used multiple methods to train an ANN, 

including the DE algorithm, BP, and a Levenberg-Marquardt method. They found that the DE-based ANN 

could obtain better classification in the presumed time than the other two methods. Dai, et al. [4] 

investigated a number of EAs in training the ANN, and concluded that all of the heuristic search algorithms 

were superior over BP with regard to the regulation performances, but less computationally efficient.  

Sulistiyo and Dayawati [39] developed a GA-type evolutionary strategy in optimizing the weights of a 

Feed-Forward ANN and determined that the EA-based ANN had similar performances in the training phase 

when compared to the BP-based ANN, but yielded consistently smaller errors in the testing phase.  

 

According to the literatures mentioned above, it has been widely acknowledged that the BP and 

gradient-descent optimization schemes have many drawbacks, and that the EAs are proven to be useful in 

remedying the associated weaknesses with BP and gradient-based optimizations. However, given a 

real-world regression or classification problem, selecting a proper ANN training algorithm is a tedious task, 

which requires a large number of independent experiments and inclusive comparisons among all kinds of 

EAs. Most of the comparison experiments summarized above were limited to a few particular cases and 

comparison studies were carried out comparing a proposed EA against the BP scheme. In order to get a 

more comprehensive comparison among all types of EAs in assisting ANN weight training, in this study, 

one of the focuses is to carry out a large-scale numerical experiment and test the performances of different 

EAs with regards to their enhancements on optimizing ANN training weights. The experiments in this 

paper include 17 benchmark, real-world, machine-learning datasets retrieved from the UCI computer 

science repository [24].  

 

In addition, another significance of this study is to introduce a powerful evolutionary optimization scheme, 

termed the SP-UCI [2] in support of the ANN weight training. The SP-UCI algorithm is a population-based, 



global, evolutionary search scheme, which was developed based on an efficient and effective Shuffled 

Complex Evolutionary Global Optimization – University of Arizona (SCE-UA) scheme [6]. The family of 

the SCE-UA algorithm includes various versions, which were developed for different tasks, such as the 

multi-objective optimization [46], distribution estimations in a Bayesian framework, and high-dimensional 

optimization problems [2, 3]. All kinds of SCE-UA descendants are proven to be effective and efficient in 

the fields of optimization, computer sciences, hydrology, and water resources management [2, 3, 6, 46]. 

According to Chu et al. [2, 3],  SP-UCI combines the strengths of (1) the Nelder-Mead simplex downhill 

local search scheme [30], (2) the global complex competition evolution [6], and (3) the Principal 

Component Analysis (PCA) [19]. The advantage of the SP-UCI lies in its capability to address the 

high-dimensional challenge, or termed as the “curse of dimensionality”, which is commonly associated 

with complex, real-world problems. With respect to the ANN weight training problem, the total number of 

ANN connectivity weights between input-hidden layers, and hidden-output layers is quite large, which 

makes the optimization of ANN weight a suitable problem for applying the SP-UCI algorithm. 

 

The superiority of the SP-UCI over GA, PSO, and DE on composite test functions has already been 

demonstrated in Yang, et al. [46], however, no study has been conducted to implement the SP-UCI in ANN 

training and investigate its suitability in tuning the ANN weights. In another previous study conducted by 

Gupta, et al. [13], the Nelder-Mead simplex downhill scheme, which was used in SP-UCI, has been tested 

against BP and the conjugated gradient-descent scheme with regard to training the ANN weights on a 

number of simple test functions. According to the experiments demonstrated in Gupta, et al. [13], the 

simplex downhill scheme is capable of producing residuals similar to those of BP and the conjugated 

gradient-descent scheme, but requires fewer function evaluations. In addition, Gupta, et al. [13] concluded 

that when using a global search procedure, i.e., the multi-start simplex approach, the associated risk of 

population converging to a sub-optimal solution could be reduced. Nevertheless, the SP-UCI algorithm 

remained untested, although the suitability of the simplex downhill scheme in training the ANN and the 

sensitivity of the initial start position in the weight space were discussed in Gupta et al. [13]. Given the fact 



that the Nelder-Mead simplex downhill scheme is only one of the three core-technics that constitute the 

SP-UCI algorithm, a direct implementation of the SP-UCI algorithm into ANN weight training and 

comparison against other EAs needs to be carried out.  

 

Despite using EAs in training an ANN with a specific architecture or topography, the use of EAs in the 

optimal design of an ANN structure is another popular research topic in the literature. According to Yao 

[45], to design an ANN architecture is a trial-and-error process and is always subject to users’ preference 

and expert experiences. EAs are also found to be useful tools in automatically designing ANN structures 

and topographies as summarized by Yao [45], such as the number of hidden neurons, layer connectivity, 

and the transfer function of each neuron, etc. Nevertheless, Fogel [9] argued that the evolution of 

architectures without any weight training would not give accurate fitness, which indicated the importance 

of proper tuning of ANN weights. A remedy will be to use EAs on ANN architecture and weight training 

simultaneously and collaboratively so that a higher accuracy can be reached. As concluded by Yao [45], 

simultaneous applying EAs on different levels of ANN, i.e., architecture, weight-space training and 

learning rules, can be inefficient and unnecessary due to the large number of function evaluations required 

by various EAs.  

 

Therefore, in this study, we present a pioneer work of applying the SP-UCI algorithm in training the ANN 

weight and comparing its performances with multiple state-of-the-art heuristic search methods, including 

GA, PSO, SA, and DE. The main contributions of this study are (1) introduce a new type of EA, termed the 

SP-UCI algorithm, into the weight training process of an ANN model, and (2) compare and investigate the 

suitability of different kinds of heuristic search optimizations on large-scale, multi-disciplinary, benchmark 

machine-learning datasets. The numerical comparison results will provide useful information and 

references for any future study for choosing proper EAs as ANN training algorithms. 

 



The organization of this paper is as follows: Section 2 introduces the methodologies, including ANN and 

employed heuristic search methods (SP-UCI, GA, PSO, SA and DE), and the benchmark machine-learning 

datasets. Section 3 presents the experiment results; Discussion is provided in Section 4, and Section 5 

summarizes the main finding, conclusions and future works.  

 

2. Methodology and Data 

2.1 ANN and BP 

The ANN is a powerful predictive model initially introduced by McCulloch and Pitts [29], which mimics 

the neurological structure of the human brain [25]. In the structure of the ANN, a non-linear regression 

mode of target variables is built on decision variables (also called predictors or features). The hearts of an 

ANN structure are: (1) its hidden layer that consists of numbers of hidden nodes, and (2) the activation 

functions processing and extracting explicit information between features and target variables. The ANN is 

used extensively in many fields of study, such as pattern recognition [16], image processing [1], ecological 

modeling [23], and water resources management [6, 28, 47, 48], etc. In the literature, one of the most 

commonly used ANN structures is a Three-Layer Feed-Forward Neural Network (TLFFNN) [41, 47] (Fig. 

1). As mentioned in Pratt [33], when the number of hidden nodes increases, the weight-space response 

surface will become much rougher, which jeopardizes the global convergence of many classical 

gradient-based optimization schemes. Therefore, the number of hidden nodes in the TLFFNN is set to 10, 

which results in a high-dimensional weight space for our selected benchmark datasets. 

<Figure 1 Here, Please!> 



 

Fig. 1. A Three-Layer Feed-Forward Neural Network (TLFFNN) 

 

As shown in Figure 1, a typical TLFFNN has three major parts: an input layer  ⃗(           
), a hidden 

layer  ⃗⃗(           
), and an output layer  ⃗(           

), where   ,    , and    represent the total 

number of inputs, hidden neurons, and outputs, respectively. A transformation function ( ) is used to 

connect the input with hidden neurons, and it is commonly calculated as the weighted sum of inputs, as 

shown in Eq. (1).  

                                    ∑       
  
                         (1) 

where    is the j-th neuron in the hidden layer,    is the i-th input,     represents the weight assigned to the 

i-th input in order to calculate the j-th hidden neuron, and             and            .  

Following a similar approach, another transformation function ( ) is used to connect hidden neurons to the 

outputs, which is shown in Eq. (2). 

                 ∑      
  
                                          (2) 

where    is the k-th value in the output layer,    is the j-th neuron in the hidden layer,     represents the 

weight assigned to the j-th neuron in the hidden layer, and             and            . In any ANN, 

the transformation functions   and   that connect each layer are called connectivity functions or activation 



functions. In this study, a hyperbolic tangent transformation function (Eq. 3) and a linear transformation 

function (Eq. 4) are used to connect input layer to hidden layer, and connect hidden layer to output layer, 

respectively. 

                              
 

   
  ∑      

  
   

    
  , j= 1, 2,…                           (3) 

                              ∑      
  
       , k= 1, 2,…                                 (4) 

 

The weights     and     are obtained by minimizing the Sum of Square Errors (SSE) between model 

output and the target variable (Eq. 5). To minimize Eq. (5) becomes an optimization problem, whereas, in 

this study, multiple EAs are employed and tested, including the proposed SP-UCI, GA, PSO, SA, and DE.  

                            
 

 
∑          

  
                (5) 

2.2 Heuristic Search Optimization 

2.2.1 SP-UCI 

The Shuffled Complex Evolution with Principal Component Analysis - University of California, Irvine 

(SP-UCI) is first introduced by Chu et al. [2]. The SP-UCI is based on an effective and efficient Shuffled 

Complex Evolution scheme - University of Arizona (SCE-UA) [6]. Since the debuts of SP-UCI and 

SCE-UA, both of them they have been demonstrated as superior or competitive optimizers in comparison 

with other heuristic search schemes, such as GA, PSO, SA, and DE optimizations based on the their 

performance on both composite test functions [46] and many real-world applications [46, 49]. 

 

The difference between SP-UCI algorithm and its predecessor, SCE-UA algorithm, is the introduction of 

Principal Component Analysis (PCA) with the purpose of monitoring and maintaining the population 

diversity during the entire evolution process [2]. Due to the roughness of the response surface and the 

complexity of high-dimensional optimization problems, when offspring particles converge to a subspace 

within the original parameter space, the search will be restricted in the subspace instead of a full span of the 



parameters of a problem. This phenomenon is commonly referred to “population degeneration”, which 

prevents the global convergence of many direct-search algorithms [2]. By recursively using the PCA 

technique during the evolutions of SCE-UA, the simplexes are allowed to search the full parameter space 

instead of collapsed into a subspace; therefore, the risks of population premature convergence and 

becoming trapped in local optimal are avoided.  

 

To provide more detail, the procedure in SP-UCI includes the following steps: (1) The algorithm randomly 

samples m   p points in the search space as the initial population, where m is the number of complexes, and 

p is the number of individuals in a complex. (2) The entire population is randomly shuffled and split into m 

complexes. (3) The individuals in each complex are sorted based on their fitness, i.e., the objective function 

values. (4) A simplex, i.e., a concave object with n + 1 vertices, is constructed in each complex using a 

triangular possibility function, where n is the dimensionality of the problem. (5) A Nelder-Mead simplex 

downhill optimization scheme [30] is carried out for each constructed simplex independently. (6) When 

reaching a user-defined number of iterations, all individuals in each complex are transformed into an 

orthogonal coordinate system, and the diversity and dimensionality are checked for each Principal 

Component (PC). (7) If any “population degeneration” phenomenon is identified in a given complex, i.e., a 

relative small standard deviation of population along each PC, a multi-normal resampling is executed with 

regard to the PCs that produce relatively small standard deviation. (8) After the resampling, the entire 

individuals in the orthogonal coordinate system are updated and transformed back into the ordinary 

coordinate system to perform the Nelder-Mead simplex-downhill evolution for the next loop. (9) The 

procedure (2)-(8) is repeated and looped until stopping criteria are met, i.e., the maximum number of 

iterations is reached or population convergence is fulfilled. For interested readers, the algorithm flowcharts, 

detailed information and mathematical descriptions are available in Chu et al. [2], and Yang, et al. [46]. 

 



2.2.2 Other Heuristic Search methods 

The Genetic Algorithm (GA) belongs to one of the most popular evolutionary algorithms that mimic the 

processes of natural selection [10]. Natural selection is defined as the processes that organisms 

correspondingly survive and then produce offspring who consistently process the tendency to adapt their 

environment. There are different types of natural selection processes, including chromosome heredity, 

mutation, crossover and selection.   

 

According to Simpson, et al. [36], the optimization of a particular problem using GA is achieved through 

the following procedures: (1) Randomly select sample a number of individuals to form the initial 

population. (2) All individuals are evaluated using the objective function and scored as fitness values. (3) 

Select a number of members as parents and those individuals with lower fitness values are selected as elite 

members. (4) The parent members produce their offspring using mutation and crossover, while these elite 

members are passed to the next population without any changes. (5) Replace the current population with the 

offspring and elite members. (6) Repeat Steps 2-5 until the stopping criteria are met, such as the average 

relative changes in the fitness of functions during last iterations, or the user defined maximum number of 

function evaluation.  The GA code used in this study is a real-value coded version from the Matlab global 

optimization package, which is one of the well-developed and stable GA toolboxes. The GA algorithm has 

been used in optimizing the ANN connectivity weights and proven to be useful and efficient [42].  

 

Similar to GA, the Particle Swarm Optimization (PSO) is another extensively used, population-based 

global optimizer, which simulates the social-individual behaviors of bird flocking and fish schooling [20, 

21]. Instead of natural selection operators, i.e., mutation or crossover, in PSO, the offspring production is 

based on the fitness of individuals (particles) and their movement velocities towards the individual that has 

the best fitness value. This is a simplified mimic of social behavior of bird foraging, in which the search 

mechanism has been proven to be efficient and effective in Eberhart and Kennedy [7]. According to 

Eberhart and Kennedy [7], it is assumed in the PSO search mechanism that all birds (individuals) are 



unaware of food sources (global optimum); therefore, one of the effective foraging strategies for bird flock 

is to fly toward the bird which is nearest to the food. It worth mentioning that the search mechanism in PSO 

is different from that in GA. The population in PSO is updated by approaching two best positions: (1) the 

best location that gives the best fitness value within the neighborhoods of current positions of all 

individuals, and (2) the historical best location that gives the best fitness value throughout the entire 

evolution that each individual has achieved so far, while in GA the individuals move as a group 

approaching the global optimum [31]. The employed PSO code is obtained from the standard Matlab global 

optimization toolbox. 

 

The Simulated Annealing (SA) algorithm was originally introduced by Kirkpatrick [22] as a robust global 

optimizer for addressing the issue of trapping in local minimums of the classical gradient-descent method. 

The concept of SA was inspired by the process of annealing in metal-work, in which a metal material was 

repeatedly heated and cooled down to improve the stiffness of metals. In the metal-work process, metal is 

heated to a pre-defined temperature, which will allow the metal molecules to vibrate in their neighborhood, 

and partially break the molecular bonds. Followed by the heating process, a cooling process reforms the 

molecular structure and recombines stronger molecular bonds in a way that the whole physical system 

reaches an entropy maximum state.  

 

This metal-work annealing concept can be used creatively for In Simulated Annealing optimization, a high 

temperature is used as the reheating threshold, which gradually decreases during the evolution. With a 

higher reheating-temperature, the algorithm is allowed to accept any solution that is worse than the current 

best with a higher frequency. As the reheating-temperature threshold decreases as the evolution proceeds, 

the algorithm is gradually allowed to focus only on searching a limited neighborhood of best solutions with 

reduced chances to accept worse solutions. As the reheating-temperature decreases, the chances of 

accepting worse solutions will decrease. As a result, the search will converge after a number of user-defined 

function evaluation is reached [11]. The SA algorithm has been proven to be effective in finding global 



optima on multi-modality response surfaces and many real-world problems [8].The used SA code is from 

the Matlab global optimization package with default reheating-temperature and tolerance settings. 

 

The Differential Evolution (DE) algorithm is a global, evolutionary optimization algorithm which is similar 

to GA and originally coined by Storn and Price [38]. The DE algorithm uses Darwin’s natural selection 

theory of mutation, crossover, and selection to produce better candidates for “survival” in the scope of 

fitness values. During the evolution of the DE algorithm, a mutation process is first employed to produce a 

mutated offspring by adding a scaled difference between two randomly selected vectors, or individuals, to 

the corresponding members in the population, called donor vectors. Then, a trial offspring, or trial vector, is 

created by carrying the crossover of randomly selected parent vectors or individuals. Finally, the mutated 

offspring and the trial offspring are compared and the one with better fitness value is used to update the 

population [34]. The difference between DE and GA is that, in GA, the operations of crossover and 

mutation of chromosomes are performed simultaneously as a group-mating process while, in DE, the 

crossover and mutation jointly work as a competitive procedure to generate offspring. The DE code used in 

this study was obtained from Dr. Wei Chu, which was the one used in his previous published studies [2]. 

Some recent developments and applications of DE algorithm are available at Poikolainen et al. [32]. 

2.3 Datasets and Setting 

2.3.1 Datasets 

In order to test the suitability of the proposed SP-UCI algorithm and investigate the suitability of different 

kinds of EA-enhanced ANNs, we aggressively carried out a large-scale comparison over 17 benchmark and 

real-world datasets selected from different fields. The datasets were retrieved from the UCI 

machine-learning datasets repository (https://archive.ics.uci.edu/ml/datasets.html) [24], which has been 

used extensively in numerous model- and algorithm-evaluation studies. The types of datasets used in this 

study are all multivariable and regression. The scope of selected datasets covers life, engineering, social 

sciences, and business. Table 1 lists the dataset name, number of features, target variable type, dimension of 



the weight space, and the size of population for the selected datasets. The dimension of weight space 

depends on the number of features in each dataset, which is shown in Eq. (6).  In order to produce a fair 

comparison, the population size is set to identical for all algorithms, which follows the default setting in the 

SP-UCI algorithm, as shown in Eq. (7). As the number of features and complexity of databases increase, the 

population size correspondingly increases, which allows all algorithms to have enough numbers of 

sampling in the weight space at the beginning of the searching.    

 

                                                          (6) 

                                                                 (7) 

 

Table 1. Detailed information on the selected benchmark dataset from the UCI machine-learning repository 

<Table 1 here, please!> 

 

2.3.2 Experiment Design 

In all performed experiments, 70% of the data is used for training the ANN model, 15% of the data is used 

for validation, and the remaining 15% is held out as an independent testing dataset. To examine the 

reproducibility of the comparison experiments, we first conducted 30 independent runs of each algorithm 

using an identical split of training, validation, and testing datasets. Furthermore, another 30 runs were 

carried out for each algorithm using randomly shuffled training, validation, and testing datasets in order to 

test the predictive performances of the models using different training datasets. In other words, there is a 

total of number of 60 runs performed for each algorithm. 30 of the 60 runs use identical training, validation, 

and testing datasets to test the reproducibility of the experiment results. In another 30 runs, before executing 

optimization algorithms, the datasets are shuffled and split into training, validation, and testing datasets to 

test the reliability of algorithm performances. Last, all five EA optimization schemes (SP-UCI, PSO, GA, 



SA, and DE) are implemented to the TLFFNN, and the convergence performances are compared in the 

training, validation, and testing datasets, respectively.  

 

The crossover and migration fraction rates used in GA are 0.8 and 0.2 respectively. A Gaussian mutation 

scheme is used with default value of 1 for both scale and shrink rates. By default setting for PSO, the 

cognitive and social attraction rates are 0.5 and 1.25, respectively. The initial temperature in SA is 100 for 

each dimension. By default, the reheating temperature to the initial temperature ratio equals to 0.95 to the 

power of iteration number. The crossover probability of 0.7 is used in DE. A default value of 2 is set to both 

the number of simplexes in a complex, and total number of complexes in SP-UCI. 

 

 

3. Results 

3.1 Training and Validating Period 

As mentioned above, there are a total of 30 independent runs performed for each algorithm using the same 

training datasets. In Figure 2, the evolution processes of SP-UCI-, GA-, PSO-, SA-, and DE-based ANN for 

one single run randomly selected among the 30 independent runs are shown, where the x-axis indicates the 

number of function evaluations, and the y-axis represents the Sum of Square Errors (SSE) as objective 

function values. The final converged objective function value for each algorithm is marked with colored 

stars for each algorithm. A lower final-objective function value (smaller y-value) indicates a better 

convergence performance. A smaller number of function evaluations (smaller x-value) means a higher 

computational efficiency of the search algorithms. As shown in Figure 2, the search starts with relatively 

high objective function values (error terms), and the objective function values decrease as the search 

evolves. To quantitatively compare the ANN performances of the demonstrated run results in Figure 2, the 

final objective function values for training, validation, and testing datasets are shown in Table 2. In Table 2, 

the bold and underlined values for each row indicate the best final objective function values, i.e., the 



smallest errors, achieved by all EAs on each database. The smaller the values in the training, validation, and 

testing datasets, the better the convergence performances with the performed EAs.  

 

<Figure 2 here, please!> 

 

Figure 2. The evolution processes of SP-UCI-, GA-, PSO-, SA-, and DE-based ANN on different datasets 

 

Table 2. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on validation and 

testing datasets (bold and underlined values indicate the best statistics for each database) 

<Table 2 here, please!> 

 



Table 3. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on same training 

datasets with 30 independent runs (bold and underlined values indicate the best statistics for each dataset) 

<Table 3 here, please!> 

 

Table 4. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 randomly 

shuffled training datasets (bold and underlined values indicate the best statistics for each dataset) 

<Table 4 here, please!> 

 

In addition, we conducted 30 independently repeated runs to examine the reproducibility of the 

demonstrated run results. The statistics of the final objective function values for each algorithm are 

calculated and shown in Table 3. The calculated statistics include the mean of the final objective function 

values for all 30 independent runs, and the Standard Deviation (Std). The lower the mean value, the better 

convergence an algorithm can produce. The smaller the Std value, the better the consistency of reproducing 

similar results. Similarly, the bold and underlined values for each row in Table 3 indicate the best (smallest) 

mean and Std values for each database. 

  

3.2 Testing Period 

Using another 30 randomly shuffled datasets, the statistics of the final objective function values for each 

algorithm are calculated and shown in Figure 4. The difference between the 30 independent runs and the 30 

shuffled runs is that, under the scenario of independent runs, the splits of training, validation, and testing 

datasets are kept identical for all 30 runs, whereas the datasets partitions are different among all 30 runs 

under the shuffled scenario. The tests on 30 shuffled datasets are intended to investigate whether the 

performances of algorithms are consistent if different combinations of data points in a particular dataset are 

used, which is a common approach in the field of machine-learning. It is possible that one algorithm can 



perform better than others on a specific combination of training data points, while the performance cannot 

be achievable if different training data points are used. 

 

Table 5. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on testing datasets 

with 30 independent runs (bold and underlined values indicate the best statistics for each dataset) 

<Table 5 Here, Please!> 

 

Table 6. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 randomly 

shuffled testing datasets (bold and underlined values indicate the best statistics for each dataset) 

<Table 6 Here, Please!> 

 

When comparing the best statistics (bold and underlined values) in Tables 3 and 4, there are some 

differences with regard to the final convergence values, and the best performed algorithm class. This is 

because the random shuffling of data points is able to construct different training databases, and to form 

different regression modes for each EA. When the ANN connectivity weights are trained using different 

training datasets, the performances in training, validation, and testing datasets vary from one shuffling 

combination to another. 

 

4. Discussion 

4.1 Algorithm Performances 

According to the training period results shown in Table 2, the SP-UCI-based ANN is able to reach the 

lowest final objective function values (the smallest errors) for 12 out of 17 datasets when compared to the 

results derived with other EAs-based ANN. According to the validation and testing results shown in Table 

2, the SP-UCI-based ANN outperforms other algorithms-based ANNs for 11 out of 17 datasets. 

Furthermore, for the datasets that SP-UCI-based ANN did not perform as the best algorithm (datasets 1, 3, 



4, 5, 13, and 14 of Table 2), the final objective function values (error terms) obtained by SP-UCI-enhanced 

ANN are rather comparable with the best performing model, respectively. According to the training 

datasets error trajectories shown in Figure 2, generally, SP-UCI, PSO, and GA are able to find lower 

objective function values than SA and DE. For most of the datasets, the final objective function values 

reached by SP-UCI are slightly lower than those produced by PSO and GA.  

 

Another interesting finding is that in some datasets, such as datasets 1, 2, 4, 5, 7, 9, and 13, SA and GA are 

surprisingly fast in optimizing the objective function values, especially during the beginning 20% of the 

entire evolutions. In these datasets, SP-UCI is relatively slow at the beginning of the evolutions, and the 

best function values during iterations are high. Nevertheless, the evolutions of SP-UCI are able to pursue 

low errors and surpass the performances of many other algorithms at the end of the search. This is because 

the optimization scheme used in SP-UCI is adaptive and self-regulated during the entire evolution. In the 

beginning of all runs, the search by SP-UCI focuses on a relatively large domain of parameter spaces, and 

the complexes are recursively shuffled in order to exchange information of the response surface, i.e., the 

current best fitness values. As the search continues, the constructed simplex in each complex becomes 

smaller due to the shrinking strategy used in the Nelder-Mead simplex downhill scheme. Thus, the search 

domain gradually transforms from a large-scale, global region into a smaller local area, where the search 

quickly converges. As a result, the best objective function values eventually found by the simplex-complex 

scheme in SP-UCI-based ANN are demonstrating the lowest against other EAs in a single run for most of 

the datasets as demonstrated in Table 2.  

 

4.2 Consistency and Reproductivity 

In order to investigate the consistency and reproductivity of different EA-enhanced ANNs, we carried out 

two scenario tests. Under scenario 1, we carried out 30 independent runs on each dataset using the same 

training, validation, and testing datasets. Under scenario 2, another 30 runs were performed using different 



shuffled data. In other words, the experiments under scenario 2 use different training, validation, and testing 

datasets. The results for the training datasets for all 30 runs under scenario 1 and 2 are shown in Tables 3 

and 4, respectively.  Furthermore, the algorithm performances on testing datasets under scenario 1 and 2 are 

shown in Tables 5 and 6, respectively. 

 

According to the training results for 30 independent runs (Table 3) and 30 shuffled runs (Figure 4), the 

mean and Std of the final optimized objective function values with SP-UCI are consistently lower than 

those using other EA-based ANNs for 12 out of 17 datasets, and 11 out of 17 datasets, respectively. When 

compared with the single run results shown in Table 2, some slight differences among multiple runs are 

observed with regard to the best objective function values obtained by each algorithm. The differences 

among different run results under the same scenario indicate the randomness and deceptiveness associated 

with each single individual run due to computation and rounding errors. According to the averaged statistics 

shown in Table 3, the mean and Std of final objective function values produced by SP-UCI-, PSO-, and 

GA-based ANNs are consistently lower than those produced by SA- and DE-based ANNs. A lower value 

on mean and Std indicates a better convergence. The averaged algorithm performances can be ranked as 

SP-UCI > GA > PSO > SA > DE, if sorely based on the averaged best objective function values shown in 

Table 3. Similarly, based on the averaged performances of 30 runs conducted on the shuffled training 

datasets (Figure 4), the algorithm performance ranking is SP-UCI > PSO > GA > SA   DE.  

 

Despite the algorithm performances on training datasets, more importantly, the trained ANN weights are 

evaluated on testing datasets to show the accuracy of model performances in practice. According to the 

testing results for 30 independent runs (Table 5), SP-UCI-enhanced ANN is able to produce the lowest 

mean and Std values for 12 out of 17 datasets, which suggests a superior convergence capability of 

SP-UCI-based ANN over other EA-enhanced ANNs. In addition, according to the testing performances 

using the trained weights from 30 shuffled datasets (Table 6), SP-UCI-enhanced ANN is able to reach the 

lowest mean and Std values for 11 out of 17 datasets when compared to those with others. As shown in 



Tables 5 and 6, PSO-, GA-, SA-, and DE-based ANNs are able to reach the lowest mean and Std values in a 

few testing datasets individually. However, the lowest mean and Std values are not achievable at the same 

time. In other words, PSO-, GA-, SA-, and DE-based ANNs sometimes can obtain the lowest mean 

objective function value, but the variability of the final convergence is relatively large when repeating 

multiple runs. On the contrary, an algorithm with a relatively small Std value for multiple runs does not 

necessary generate the lowest errors in the testing phase. In the datasets in which SP-UCI-based ANN 

outperforms other algorithm, the lowest mean and Std values are achievable simultaneously. This means 

that the performance of the SP-UCI-enhanced ANN shows a consistently good convergence during the 

testing phase. Based on the statistics of the final objective function values provided in Tables 5 and 6, 

generally, the algorithm performances on testing datasets rank as follows: SP-UCI >  GA > PSO >  SA > 

DE. 

 

4.3 Uncertainties and Trade-offs 

There are two main reasons for the different convergence performances using different kinds of 

EAs-enhanced ANNs. One aspect is solely related to the search mechanism itself, i.e., the operators and 

logic used in various EAs. Some algorithms are efficient for global optimization and some are good for 

local search. Furthermore, the size of a population occasionally turns out to be sensitive and influential on 

the final convergence. With a larger population, the chances of finding a better global optimum will 

increase for all EAs. This is not only because the initial sampling will cover a larger parameter domain, but 

also because the efficiency of information exchange on the best fitness found so far will be increased during 

the entire evolution. Another uncertainty source is due to the different shapes of response surfaces that are 

associated with various problems, i.e., the flatness and roughness of the objective function space. In some 

of the benchmark databases, such as databases 1, 3, and 6, the objective function space is relatively flatter 

than others. In other words, the difference between the objective function values in global optimum and any 

randomly sampled position is small, which destructively creates many large and flat valley-shaped search 



domains. The complexity of response surfaces, either the large flat valley-shape area, or the rough area with 

many local minimums, will introduce huge challenges to the global convergence of each EA. For example, 

with regard to databases 1, 3, and 6, the magnitudes of objective function values are very large, and the 

difference between initial sampling and final minimized objective function values is relatively small. In the 

training phases on these databases, the evolution processes of all types of EAs are inevitably under the risks 

of pre-convergence. When producing the next generation, no single algorithm has the proper mechanism to 

guarantee the discovery of the global optimum, which is possibly located in a far-away position with only 

relatively small variance as compared to the current best fitness in the search domain.  

 

It is worth mentioning that the demonstrated comparison among different EAs is subject to the famous 

No-Free-Lunch (NFL) theorems [43].  According to the NFL theorem by Wolpert and Macready [43], the 

enhanced performances in any algorithm on a set of problems is always offset by another set of problems. 

Here, the performances refer to all possible measures that are associated with the algorithm, such as 

effectiveness, efficiency, uncertainty, flexibility, reproductivity, and suitability, etc. In the practical use of 

EAs, the effectiveness (convergence) and computational efficiency (speed) belong to two of the crucial 

measures that users mostly concern. In our experiments, there is a conspicuous tradeoff between 

convergence and speed. For example, SA- and GA-enhanced ANNs tend to have superior computational 

efficiency at the beginning of the evolutions, such as on databases 1, 2, 4, 5, 9, 10, 11, 13, 14, and 16. 

However, the greedy search mechanisms used in SA and GA cannot generate the lowest final converged 

objective function values when compared to other EAs. In other words, the search schemes in SA and GA 

are not able to guarantee the global convergence. In contrast, according to Figure 2, SP-UCI- and 

PSO-based ANN are much slower than the SA- and GA-based ANN during the beginning of evolutions. 

However, lower final objective function values, or a better convergence, are achievable on most of the 

databases using SP-UCI- and PSO-enhanced ANN. A rational explanation is that during the beginning of 

the evaluation, search strategies used in SP-UCI and PSO are more rigorously progressive, i.e., algorithm 



tends to do more comprehensive and detailed search instead of forcing the population toward the fastest 

gradient decreasing direction, than those used in other EAs. The strategic slowdown in the searches by 

SP-UCI and PSO during the beginning of evolutions allows the algorithms to frequently reckon the best 

searching directions towards the global optimum and to efficiently infer the position of global optimums in 

the parameter space. The risks of population being trapped in deceptive local optimums can be reduced in 

SP-UCI and PSO at the beginning of search.   

 

5. Conclusions 

In this paper, a newly developed SP-UCI-enhanced ANN is presented. The SP-UCI algorithm is an efficient 

and effective global evolutionary optimization scheme, which has never been employed nor tested in the 

field of tuning ANN connectivity weights. The performance of SP-UCI-enhanced ANN is proven to be 

overwhelming, or at least competitive, to other commonly used EA-based ANN, including  PSO, GA, SA, 

and DE. The  following conclusions are drawn based on the presented experiments: 

(1) The SP-UCI algorithm is proven to be an efficient and effective EA with regard to producing 

optimized ANN connectivity weights on most of the tested datasets.  

(2) During the beginning of the evolution, SP-UCI and PSO are less efficient than others, i.e., SA and 

GA.  However, the final convergence turns out to be competitive at the end of the search. The 

different performances are due to the differences among the searching mechanisms used in various 

EAs, such as crossover, mutation, and shrinking of simplex, etc.  

(3) The use of EAs in the field of ANN design includes multiple aspects, such as connectivity weight 

training, ANN structure, and topography. Weight-space training is as important as the optimal 

design of the ANN structure and topography.   

 

Future works are recommended to investigate the performances of using SP-UCI-, GA-, PSO-, SA-, and 

DE-enhanced ANN structure and topography designing. To the authors’ knowledge, an attempt to use 



SP-UCI in optimizing ANN’s structure and topography has never been reported in the literature, as well as 

the use in training ANN connectivity weights. As demonstrated in this paper, the SP-UCI algorithm is a 

powerful tool in tuning ANN weights, and its usefulness in optimally designing the ANN structure is worth 

investigating. A recent paper by Zhang et al. [50] also introduced a novel way of solving optimization tasks 

by Neural Network. Furthermore, some recent studies conducted by Yang, et al. [47] pointed out that the 

performances of the ANN combined with BP and a gradient-descent scheme are limited with regard to 

monthly and seasonal streamflow prediction. They suggested that the ANN training with heuristic search 

optimization schemes can be tested further, especially for the chaotic natural systems, and the complex 

human decision making processes. Authors also suggest future work could be carried out to test the 

SP-UCI-ANN framework on other high-nonlinear problems, such as the rainfall-runoff processes [27] and 

probability distribution estimates [26]. Furthermore, different EA-enhanced ANN training can be tested on 

many recent developed Recurrent Neural Network and Convolutional Neural Network for solving temporal 

and spatial classification and regression problems.  
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Table 1. Detailed information on the selected benchmark datasets from UCI machine learning repository 

Dataset 

No. 
Name 

No. 

Features 

Target 

Variable Type 

Weight 

Space 

Dimension 

Population 

Size 

1 Airfoil Self-Noise 5 Real 64 258 

2 Auto MPG 7 Real 82 330 

3 Automobile 22 Real 217 870 

4 Breast Cancer Wisconsin 

(Prognostic) 
10 Integer 109 438 

5 Challenger USA Space Shuttle 

O-Ring 
3 Integer 46 186 

6 Combined Cycle Power Plant 4 Real 55 222 

7 Computer Hardware 9 Integer 100 330 

8 Concrete Slump Test (Strength) 7 Real 82 330 

9 Concrete Slump Test (Slump) 7 Real 82 330 



10 Concrete Slump Test (Flow) 7 Real 82 330 

11 Concrete Compressive Strength 8 Real 91 366 

12 Fertility 9 Integer 100 402 

13 Forest Fires 10 Real 109 438 

14 Housing 13 Real 136 546 

15 ISTANBUL STOCK EXCHANGE 7 Real 82 330 

16 Energy efficiency (Heating Load) 8 Real 91 366 

17 Energy efficiency (Cooling Load) 8 Real 91 366 

 
 

 

Table 2. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 

validation and testing datasets (bold and underlined values indicate the best statistics for each 

database) 

Datas

et 

No. 

SP-UCI PSO GA SA DE 

 Train Val. Test Train Val. Test Train Val. Test Train Val. Test Train Val. Test 

1 
9.274e

4 
2.037

e4 
4.076

e4 
9.277e

4 
2.037

e4 
4.077

e4 
9.274e

4 

2.037
e4 

4.076

e4 

9.274e
4 

2.037

e4 

4.076
e4 

9.274e
4 

2.037
e4 

4.076
e4 

2 
4.681e

3 

9.171

e2 

1.925
e3 

4.801e
3 

9.404
e2 

1.975
e3 

4.700e
3 

9.192
e2 

1.921

e3 

4.795e
3 

9.499
e2 

1.955
e3 

5.152e
3 

1.024
e3 

2.144
e3 

3 
1.644e

8 

6.155

e7 

7.972

e7 

1.644e

8 

3.916

e7 

7.969

e7 
1.644e

8 

3.916

e7 

7.969

e7 

1.644e

8 

3.916

e7 
7.969

e7 

1.644e

8 

3.916

e7 

7.969

e7 

4 
2.117e

2 

1.754

e1 

1.205

e2 
2.128e

1 

3.150

e0 

1.521

e1 

7.179e

1 

1.603

e1 

5.686

e1 

4.059e

1 

9.198

e0 

2.121

e1 

2.148e

2 

5.469

e1 

5.374

e1 

5 
0.000e

0 

5.000
e-1 

1.000
e0 

2.450e
1 

4.500
e0 

1.300
e1 

0.000e

0 

0.000

e0 

0.000

e0 

1.750e
1 

5.500
e0 

1.200
e1 

1.250e
1 

5.000
e-1 

2.000
e0 

6 
6.687e

6 

1.431

e6 

2.863

e6 

6.700e

6 

1.433

e6 

2.869

e6 

6.696e

6 

1.432

e6 

2.873

e6 

6.709e

6 

1.435

e6 

2.872

e6 

6.698e

6 

1.433

e6 

2.868

e6 

7 
1.968e

5 

3.057

e4 

6.118

e4 

1.989e

5 

3.106

e4 

6.217

e4 

1.977e

5 

3.078

e4 

6.154

e4 

1.976e

5 

3.076

e4 

6.155

e4 

1.977e

5 

3.075

e4 

6.155

e4 

8 
3.064e

4 

6.379

e3 

1.331

e4 

3.397e
4 

6.969
e3 

1.457
e4 

3.271e
4 

6.768
e3 

1.372
e4 

3.205e
4 

6.612
e3 

1.383
e4 

3.198e
4 

6.586
e3 

1.374
e4 

9 
5.972e

3 

1.582

e3 

3.411

e3 

7.536e

3 

1.982

e3 

4.276

e3 

7.091e

3 

1.982

e3 

3.552

e3 

6.463e

3 

1.879

e3 

3.691

e3 

7.461e

3 

1.968

e3 

4.228

e3 

10 
7.118e

4 

1.511

e4 

3.231

e4 

7.436e

4 

1.573

e4 

3.379

e4 

7.312e

4 

1.608

e4 

3.316

e4 

7.397e

4 

1.569

e4 

3.377

e4 

7.558e

4 

1.599

e4 

3.426

e4 

11 
3.728e

5 

7.226

e4 

1.481

e5 

3.993e
5 

7.786
e4 

1.594
e5 

4.101e
5 

7.997
e4 

1.542
e5 

3.929e
5 

7.648
e4 

1.567
e5 

3.998e
5 

7.789
e4 

1.595
e5 

12 
7.500e

0 

3.000

e0 

6.000

e0 

1.250e

1 

5.500

e0 

1.100

e1 

1.250e

1 

3.000

e0 

7.000

e0 

1.000e

1 

3.500

e0 

7.000

e0 

1.550e

1 

7.000

e0 

1.400

e1 

13 
1.017e

4 

3.377

e2 

6.764

e2 

1.017e

4 

3.344

e2 

6.701

e2 
1.015e

4 

3.318

e2 
6.605

e2 

1.016e

4 
3.311

e2 

6.611

e2 

1.016e

4 

3.311

e2 

6.638

e2 

14 
5.327e

3 
1.316

e3 
2.659

e3 

5.292e

3 

1.308

e3 

3.015
e3 

5.925e
3 

1.455
e3 

2.942
e3 

6.082e
3 

1.515
e3 

3.060
e3 

6.304e
3 

1.561
e3 

3.157
e3 

15 
2.947e

-2 

5.173

e-3 

1.051

e-2 

3.213e

-2 

5.231

e-3 

1.068

e-2 

3.158e

-2 

5.100

e-3 

8.059

e-2 

4.487e

-1 

1.084

e-1 

2.178

e-1 

4.318e

-1 

9.219

e-2 

1.864

e-1 

16 
7.737e

3 

1.751

e3 

3.502

e3 

9.069e

3 

2.049

e3 

4.099

e3 

9.225e

3 

2.077

e3 

3.670

e3 

8.422e

3 

1.904

e3 

3.808

e3 

8.697e

3 

1.952

e3 

3.903

e3 

17 
9.674e

3 

2.089

e3 

4.250

e3 

1.045e
4 

2.255
e3 

4.590
e3 

1.079e
4 

2.328
e3 

4.356
e3 

1.039e
4 

2.237
e3 

4.550
e3 

1.029e
4 

2.214
e3 

4.501
e3 

 

 

 

 



Table 3. Statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on same 

training datasets with 30 independent runs (bold and underlined values indicate the best statistics 

for each dataset) 

Datas

et 

No. 

SP-UCI PSO GA SA DE 

 Mean Std Mean Std Mean Std Mean Std Mean Std 

1 
9.276e

4 

2.330e

1 

9.276e

4 

1.824e

1 

9.275e

4 
3.185e

1 

9.274e

4 

8.890e

1 

9.282e

4 

6.361e

1 

2 
5.209e

3 

4.456e

2 

4.746e

3 

2.162e

2 
4.709e

3 

1.016e

2 

4.885e

3 

2.082e

2 

6.452e

3 
9.893e

1 

3 
1.644e

8 

2.861e

3 

1.644e

8 

6.585e

3 
1.644e

8 

1.740e

3 

1.644e

8 

5.780e

3 

1.644e

8 

1.748e

3 

4 
2.005e

2 

7.283e

1 
2.012e

1 

1.179e

0 

5.951e

1 

8.910e

0 

3.475e

1 

3.609e

0 

2.157e

2 

2.963e

1 

5 
0.000e

0 

0.000e

0 

2.322e

1 

1.726e

1 

0.000e

0 

0.000e

0 

1.517e

1 

4.496e

0 

3.900e

1 

6.282e

0 

6 
6.687e

6 

3.759e

2 

6.719e

6 

1.444e

2 

6.712e

6 

4.427e

2 

6.705e

6 

8.106e

2 

6.777e

6 

5.497e

2 

7 
1.968e

5 

1.461e

2 

1.983e

5 

5.920e

2 

1.976e

5 

1.431e

2 

1.979e

5 

3.127e

2 

2.017e

5 

2.162e

2 

8 
3.064e

4 

3.267e

0 

3.334e

4 

1.007e

3 

3.183e

4 

4.309e

2 

3.265e

4 

6.008e

2 

3.920e

4 

4.059e

2 

9 
7.119e

4 

6.991e

0 

7.540e

4 

1.232e

3 

7.302e

4 

5.268e

2 

7.432e

4 

7.268e

2 

8.328e

4 

4.709e

2 

10 
5.972e

3 

1.485e

0 

6.947e

3 

3.235e

2 

6.274e

3 

9.549e

1 

6.449e

3 

2.654e

2 

9.421e

3 

1.849e

2 

11 
3.728e

5 

7.086e

1 

4.032e

5 

8.860e

3 

3.878e

5 

3.818e

3 

3.962e

5 

5.490e

3 

4.592e

5 

3.071e

3 

12 
7.333e

0 

1.011e

0 

1.082e

1 

2.365e

0 

9.600e

0 

2.444e

0 

1.557e

1 

1.837e

0 

2.167e

1 

1.184e

0 

13 
1.025e

4 

3.709e

1 

1.016e

4 

1.201e

1 
1.015e

4 

3.405e

1 

1.017e

4 

1.003e

1 

1.031e

4 

8.998e

1 

14 
5.295e

3 

1.611e

1 

6.299e

3 

1.751e

2 

5.802e

3 

1.444e

2 

6.148e

3 

1.323e

2 

7.819e

3 

6.950e

1 

15 
2.891e

-2 

5.370e

-4 

3.555e

-2 

5.841e

-3 

1.719e

-1 

9.424e

-2 

4.561e

-1 

1.146e

-1 

4.977e

-1 

2.009e

-1 

16 
7.740e

3 

2.162e

0 

8.673e

3 

4.176e

2 

8.130e

3 

1.703e

2 

8.573e

3 

2.580e

2 

1.132e

4 

1.227e

2 

17 
9.674e

3 

1.936e

0 

1.085e

4 

4.106e

2 

1.006e

4 

1.422e

2 

1.055e

4 

2.295e

2 

1.367e

4 

1.426e

2 
 

 

 



Table 4. Statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 

randomly shuffled training datasets (bold and underlined values indicate the best statistics for each 

dataset) 

Datas

et 

No. 

SP-UCI PSO GA SA DE 

 Mean Std Mean Std Mean Std Mean Std Mean Std 

1 
9.430e

4 
4.012e

3 

9.430e

4 

4.013e

3 

9.429e

4 

4.015e

3 
9.428e

4 

4.013e

3 

9.436e

4 

4.015e

3 

2 
5.048e

3 

3.014e

2 

4.813e

3 

2.364e

2 
4.764e

3 

1.587e

2 

4.879e

3 

2.347e

2 

6.477e

3 

1.669e

2 

3 
1.654e

8 

1.039e

7 
1.653e

8 

1.039e

7 

1.653e

8 

1.039e

7 

1.653e

8 

1.039e

7 

1.654e

8 

1.039e

7 

4 
2.053e

2 

7.311e

1 
1.917e

1 

3.105e

0 

6.187e

1 

6.893e

0 

3.299e

1 

3.701e

0 

2.358e

2 

3.694e

1 

5 
0.000e

0 

0.000e

0 

2.082e

1 

1.625e

1 

3.333e

1 

1.269e

-1 

1.433e

1 

4.346e

0 

4.027e

1 

5.338e

0 

6 
6.687e

6 

3.936e

3 

6.718e

6 

1.168e

4 

6.712e

6 

6.154e

3 

6.707e

6 

9.431e

3 

6.778e

6 

5.365e

3 

7 
2.392e

5 

5.238e

4 

2.405e

5 

5.257e

4 

2.399e

5 

5.245e

4 

2.402e

5 

5.248e

4 

2.442e

5 

5.272e

4 

8 
3.074e

4 

9.256e

2 

3.374e

4 

1.336e

3 

3.191e

4 

1.040e

3 

3.297e

4 

1.263e

3 

3.930e

4 

1.282e

3 

9 
7.321e

4 

3.355e

3 

7.712e

4 

3.469e

3 

7.511e

4 

3.506e

3 

7.656e

4 

3.405e

3 

8.541e

4 

3.848e

3 

10 
6.126e

3 

3.306e

2 

7.196e

3 

4.599e

2 

6.458e

3 

3.947e

2 

6.561e

3 

3.914e

2 

9.659e

3 

4.943e

2 

11 
3.759e

5 

8.848e

3 

4.051e

5 

1.286e

4 

3.890e

5 

9.930e

3 

3.991e

5 

1.168e

4 

4.621e

5 

9.634e

3 

12 
1.440e

0 

1.030e

1 

3.253e

0 

8.650e

0 

2.649e

0 

1.477e

1 

2.250e

0 

2.067e

1 

3.174e

0 

1.440e

0 

13 
7.174e

3 

3.299e

3 

7.112e

3 

3.277e

3 
7.103e

3 

3.272e

3 

7.119e

3 

3.278e

3 

7.228e

3 

3.304e

3 

14 
5.121e

3 

2.166e

2 

6.102e

3 

3.157e

2 

5.607e

3 

2.781e

2 

5.868e

3 

2.598e

2 

7.589e

3 

3.029e

2 

15 
2.992e

-2 

1.520e

-3 

4.042e

-2 

1.222e

-2 

1.964e

-1 

2.016e

-1 

4.444e

-1 

1.910e

-1 

5.226e

-1 

1.695e

-1 

16 
7.985e

3 

2.011e

2 

9.104e

3 

3.787e

2 

8.324e

3 
1.904e

2 

8.841e

3 

3.501e

2 

1.156e

4 

2.746e

2 

17 
9.687e

3 

1.929e

2 

1.101e

4 

4.565e

2 

1.012e

4 

2.740e

2 

1.057e

4 

3.876e

2 

1.364e

4 

2.506e

2 
 

 

Table 5. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on testing 

datasets with 30 independent runs (bold and underlined values indicate the best statistics for each 

dataset) 



Datas

et 

No. 

SP-UCI PSO GA SA DE 

 Mean Std Mean Std Mean Std Mean Std Mean Std 

1 
4.077e

4 

1.006e

2 

4.077e

4 

7.877e

2 
4.076e

4 

1.375e

2 

4.076e

4 

3.838e

2 

4.079e

4 

2.724e

2 

2 
2.163e

3 

1.942e

2 

1.958e

3 

9.402e

1 
1.946e

3 

4.604e

1 

2.024e

3 

9.280e

1 

2.688e

3 
3.678e

1 

3 
7.971e

7 

1.669e

3 
7.969e

7 

3.160e

3 

7.969e

7 
1.477e

3 

7.969e

7 

3.359e

3 

7.971e

7 

1.507e

3 

4 
7.350e

9 

1.693e

9 
7.348e

9 

1.692e

9 

7.348e

9 

1.692e

9 

7.348e

9 

1.692e

9 

7.350e

9 

1.693e

9 

5 
1.565e

-3 

3.522e

-3 

4.454e

-2 

7.985e

-2 

3.440e

-2 

2.634e

-2 

3.344e

0 

1.261e

0 

1.879e

1 

2.956e

0 

6 
2.863e

5 

1.531e

2 

2.877e

5 

6.196e

2 

2.874e

5 

1.891e

2 

2.871e

5 

3.489e

2 

2.901e

5 

2.353e

2 

7 
6.118e

4 

9.268e

0 

6.181e

4 

2.635e

2 

6.154e

4 

6.462e

1 

6.163e

4 

1.322e

2 

6.337e

4 

1.303e

2 

8 
1.331e

4 

9.561e

0 

1.437e

4 

4.110e

2 

1.386e

4 

1.835e

2 

1.405e

4 

2.755e

2 

1.683e

4 

2.239e

2 

9 
3.232e

4 

1.671e

1 

3.419e

4 

5.558e

2 

3.318e

4 

2.231e

2 

3.372e

4 

3.316e

2 

3.772e

4 

2.846e

2 

10 
3.412e

3 

3.412e

0 

3.923e

3 

1.848e

2 

3.606e

3 

5.379e

1 

3.635e

3 

1.636e

2 

5.315e

3 

1.306e

2 

11 
1.481e

5 

3.573e

1 

1.611e

5 

3.651e

3 

1.543e

5 

1.603e

3 

1.583e

5 

2.310e

3 

1.839e

5 

1.222e

3 

12 
6.533e

0 

1.833e

0 

1.140e

1 

3.701e

0 

1.033e

1 

2.578e

0 

1.317e

1 

3.869e

0 

1.503e

1 

3.996e

0 

13 
6.900e

2 

1.106e

1 

6.633e

2 

7.417e

0 
6.601e

2 

2.869e

0 

6.659e

2 

6.209e

0 

7.077e

2 

7.173e

0 

14 
2.645e

3 

6.922e

0 

3.141e

3 

8.570e

1 

2.884e

3 

7.197e

1 

3.070e

3 

6.617e

1 

3.838e

3 

3.599e

1 

15 
9.792e

-3 

6.460e

-4 

1.247e

-2 

2.683e

-3 

8.007e

-2 

4.316e

-2 

1.957e

-1 

5.547e

-2 

2.302e

-1 

1.031e

-1 

16 
3.504e

3 

9.936e

0 

3.915e

3 

1.866e

2 

3.672e

3 

7.427e

1 

3.870e

3 

1.135e

2 

5.081e

3 

5.324e

1 

17 
4.250e

3 

8.970e

0 

4.758e

3 

1.774e

2 

4.415e

3 

6.056e

1 

4.625e

3 

1.006e

2 

5.967e

3 

5.800e

1 

 

 

Table 6. The statistical performances of SP-UCI-, PSO-, GA-, SA-, and DE-based ANN on 30 

randomly shuffled testing datasets (bold and underlined values indicate the best statistics for each 

dataset) 

Datas

et 

No. 

SP-UCI PSO GA SA DE 

 Mean Std Mean Std Mean Std Mean Std Mean Std 



1 
3.999e

4 

7.466e

3 

3.999e

4 

7.467e

3 
3.998e

4 

7.467e

3 

3.998e

4 
7.466e

3 

4.001e

4 

7.469e

3 

2 
2.278e

3 

3.094e

2 

2.170e

3 

2.738e

2 
2.153e

3 

2.723e

2 

2.202e

3 

2.836e

2 

2.911e

3 

2.996e

2 

3 
7.350e

7 

1.693e

7 
7.348e

7 

1.692e

7 

7.348e

7 

1.692e

7 

7.348e

7 

1.692e

7 

7.350e

7 

1.693e

7 

4 
9.400e

1 

3.448e

1 
9.540e

0 

4.293e

0 

3.142e

1 

9.018e

0 

1.579e

1 

4.770e

0 

1.053e

2 

2.137e

1 

5 
3.079e

-2 

9.076e

-2 

1.326e

-1 

2.275e

-1 

1.306e

-1 

1.176e

-1 

2.415e

0 

1.629e

0 

1.532e

1 

3.321e

0 

6 
2.868e

6 

4.896e

3 

2.881e

6 

7.687e

3 

2.879e

6 

5.447e

3 
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